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Abstract

Experiments show that vacancies in solids may coalesce into voids and self-organize into a superlattice. The voids have diameters

around 10 nm and spacing of tens of nanometers. This paper develops a phase-field model to study this behavior, which incorporates

the free energy of mixing, interfacial energy and elastic energy. Vacancy diffusion is described by a Cahn–Hilliard type nonlinear

diffusion equation, which couples the vacancy distribution field and the stress field. The reduction of the mixing energy drives spin-

odal decomposition. The reduction of the interfacial energy drives void coarsening. The long-range elastic interaction and elastic

anisotropy significantly affect superlattice formation and may essentially limit void coarsening.

� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Self-organized periodic array of nanovoids has re-

ceived considerable attention in recent years for its po-

tential in nanofabrication. The first discovery of the

phenomena goes back to Evans [1]. Subjected to contin-

ual irradiation of neutrons or heavy particles at elevated
temperatures, vacancies emerge in molybdenum and

agglomerate into voids. These voids form a three-dimen-

sional body-centered cubic (bcc) lattice structure, repli-

cating the crystal lattice of the host material. The axes

of the void superlattice are parallel to those of the host

crystal. The ordered voids have diameters around

5–7 nm and lattice spacing around 20–30 nm. Similar

phenomena have been experimentally observed in sev-
eral material systems, including metals such as W [2],

Nb [3], Ni [4], alloys such as Mo–Ti [5], Ni–Al [6],
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Cu–Ni [7] and compounds such as CaF2 [8], NaCl [9].

Analogous bubble lattices, such as in helium [10], are re-

ported under gaseous ion irradiation at lower tempera-

ture (from room temperature to 0.2 melting

temperature). Self-assembled bubbles are generally

smaller than voids. The diameters are about 2–3 nm

and the superlattice spacing are around 5–7 nm. An-
other type of self-ordered defect clusters has also been

reported. Jager and Trinkaus [11] have shown that after

relatively low dose of irradiation on copper and nickel,

the vacancy regions form well aligned labyrinth-like de-

fect walls. These walls are parallel to the close-packed

directions of the host crystals. Despite the difference in

the appearance, a similar underlying mechanism may

be invoked to explain the self-organization behavior.
Experimental observations have revealed some gen-

eral features [12,13]. Tiny voids appear randomly in

the early stage of irradiation. These voids grow and start

ordering under continual irradiation (usually a couple to

tens of hours [4]) at about 0.3–0.4 melting temperature

of the specimens. Then the ordering of voids expands
ll rights reserved.
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from many early formed small ‘‘seed’’ regions to other

regions. There exists a threshold value of irradiation

dose depending on materials, and the lattice perfection

increases with the dose. However, the void ordering is

insensitive to the dose rate. In contrast to the widely

seen bcc void superlattice, a well-developed face-cen-
tered cubic (fcc) lattice has only been experimentally ob-

served in nickel, and requires a much higher dosed

irradiation.

Different models have been proposed to explain the

formation and property of the void lattice. They fall into

four main categories. The first class of models is based

on the quasi-elastic analysis. Willis and Bullough [14]

calculated the elastic energy of an infinitely large elastic
solid containing two voids or bubbles. Their results

showed that in an isotropic medium two voids or bub-

bles will always attract each other until they coalesce.

In contrast, Willis [15] showed that the energy of two

equal-sized voids or bubbles in an anisotropic medium

(molybdenum) could reach a minimum at a particular

distance. The ratio between the separation distance

and the void radius is 3.22. Stoneham [16] calculated
the elastic energy of an entire void superlattice in an

anisotropic medium with a prior assumption of the type

and the axial directions of the lattice. His results sug-

gested that the elastic energy minimized at the dis-

tance–radius ratio of 3.1 for bcc crystals and 2.2 for

fcc crystals. These analyses highlight the significant role

of elastic anisotropy in the void/bubble lattice forma-

tion. However, the prior assumption of void shape and
lattice type precludes many possible patterns. The mod-

els can determine the ratio between void radius and

superlattice spacing, but the absolute void size and lat-

tice dimension remain unknown. In particular, the mod-

els cannot describe the dynamic ordering process.

The second class of models is based on the concept of

crystallographic anisotropic diffusion of self-interstitial

atoms (SIA) in host materials [17]. SIAs and vacancies
are concurrently generated during particle irradiation.

A configuration of crowdion, consisting of SIAs, is cre-

ated in the neighborhood of a void. SIAs are supposed

to have orientational preference of migration due to

the crystal structures, and the crowdions are aligned

along the close-packed directions. The crowdions extend

from the void surface, forming crowdion supply cylin-

ders (CSC) that provide atoms to shrink the voids.
The radius of each cylinder is equal to the radius of

the void that the crowdion belongs to. When the separa-

tion of two voids is sufficiently small along the closed-

packed directions, their CSCs overlap. As a result, the

interstitial flux toward both voids decreases. In other

words, the net vacancy flux toward the two voids in-

creases, enhancing the void growth rate. Eventually,

only aligned voids survive throughout the irradiation
process, and the distance between voids is the length

of CSC. This class of models provides an explanation
of isomorphic behavior between void/bubble superlat-

tice and host crystal lattice. Nevertheless, as argued by

Krishan [18] and Dubinko et al. [13], the length of

CSC decreases exponentially with temperature. This is

not consistent with experimental observations. In fact,

long-range ordering has been reported at relatively high
temperature. Another concern is the lack of direct evi-

dence to support the existence of CSC and the aniso-

tropic migration behavior of SIA. These models

disregard the possible relation between point defect dif-

fusion and material elasticity. This might not be satisfac-

tory when considering vacancy migration in an elastic

medium.

The third class of models relies on the interaction be-
tween dislocations and cavities (voids/bubbles)

[13,19,20]. Interstitial loops (dislocations) are punched

out (or absorbed) due to the pressure exerted by the en-

trapped gas inside bubbles (or the surface tension of

void surfaces). These dislocations have orientational

preference along the crystal close-packed directions. In

the models, different mechanisms are assumed for the

formation of bubble and void superlattices. The bubble
lattice is formed by the balance between repulsive (be-

tween dislocations and bubbles) and attractive (between

bubble and bubble) forces. Void lattice is formed by the

anisotropic diffusion of interstitial loops. The interstitial

loops are attracted toward voids along the crystal close-

packed directions, forming loop supply cylinders (LSC).

When LSCs of two voids overlap, the supply of intersti-

tial loops toward each void drops drastically. On the
other hand, those disordered voids keep absorbing inter-

stitial loops and shrink. Eventually only ordered voids

survive. In these models, void lattice formation is con-

sidered as a natural selection of survival voids, which

is essentially similar to anisotropic diffusion models.

The models require pre-existing bubbles or voids. The

dynamics of bubble/void formation and coalescent pro-

cess are not considered.
The fourth class of models is based on the microstruc-

ture-induced instability. Krishan [18] suggested that

point and extended defects are produced during particle

irradiation. Point defects, such as vacancies and intersti-

tial atoms, are assumed to be mobile. Extended defects

are considered immobile, which include vacancy and

interstitial clusters, such as voids or dislocation loops.

Extended defects are distributed randomly and serve
as sinks for point defects. The combination of the defect

generation rate, recombination effect and defect migra-

tion leads to a set of rate equations describing the

dynamics of defect concentrations. Periodic concentra-

tion profiles of vacancies are obtained by solving the

eigenvalue problems. Another series of instability analy-

ses were performed by Walgraef and co-workers [21,22].

More complicated defect species and orientational pref-
erence of mobile defects are considered. The amplitude

of vacancy clusters is shown to distribute periodically,
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such as bcc and fcc void lattices. The results give per-

spective relations between defect distribution and envi-

ronment conditions. Based solely on orientational

preference of defect mobility, the models have neglected

the possible influence of elasticity.

We propose to develop a model that considers both
elasticity and the dynamic diffusion process. Experiments

and analytical studies highlight two observations. One is

phase separation. A pure metal phase separates into two

phases under irradiation: a vacancy-rich phase and a

phase rich in the interstitial atom. In other words, the

irradiation provides enough activation energy to induce

a type of spinodal decomposition. The other one is aniso-

tropic diffusion, which causes vacancies to accumulate at
certain ordered positions. We will show that the diffusion

anisotropy has close relation to the elastic anisotropy.

We adopt a phase field approach in our model. The

application of a diffuse interface allows voids or bubbles

to emerge or dissolve naturally, and the system can form

whatever lattice it favors. Voids are treated as high va-

cancy concentration regions. Dynamic processes, such

as void coalescence, are captured by updating the con-
centration profile over time. Elastic effects due to the

existence of vacancies are calculated by the microelastic-

ity theory [24]. We incorporate the free energy of mixing,

interfacial energy and elastic strain energy into the driv-

ing force for vacancy diffusion. The simulations suggest

that the elastic anisotropy can induce orientational pref-

erence in vacancy diffusion, even if the diffusivity is iso-

tropic. It is found that vacancies migrate faster along
the elastic compliant directions. This causes the self-

assembled voids to replicate the host crystal symmetry.

Our work shows that void self-assembly dynamics can

be studied via a spinodal decomposition mechanism.
2. Phase-field approach

Imada [23] was among the first to realize that spin-

odal decomposition might be a reason for void/bubble

lattice formation. He calculated the relation between

the chemical free energy and the vacancy concentration

instability, suggesting that the lost of stability may lead

to periodic vacancy structures. Here we also assume

spinodal decomposition as one possible mechanism dur-

ing the void/bubble superlattice formation. In the for-
mulation, we use void lattice as the example. Bubble

lattice can be analyzed similarly. Generally speaking,

the irradiation generates a significant amount of vacan-

cies in a crystal. The corresponding mixing energy is

large if the vacancies distribute uniformly in the crystal.

This drives phase separation. We focus on the annealing

process after the irradiation has stopped, and demon-

strate that annealing a crystal with high vacancy content
produces various void lattices. The detail of the model is

discussed below.
Vacancies are produced randomly in a crystal during

particle irradiation. A spatially continuous and time-

dependent function, c(x, t), describes the vacancy distri-

bution. Here c(x, t) represents the fraction of atomic

sites occupied by vacancies at position x, where

x = (x1,x2,x3) are the spatial coordinates. The total free
energy of the system is

G ¼
Z
V
½gðcÞ þ jðrcÞ2 þ ge� dV ; ð1Þ

where g(c) is the free energy of mixing, j is the gradient

coefficient, ge the elastic energy per unit volume, and V is

the total volume. The first term represents the mixing

energy of vacancies and crystal atoms. To describe
phase separation, we may prescribe g(c) as any func-

tional with double wells in terms of the concentration,

c(x, t). Here, we assume a regular solution [24,25], so

that

gðcÞ ¼ gvcþ gað1� cÞ þ NkBT ½c ln cþ ð1� cÞ lnð1� cÞ�
þ NXcð1� cÞ; ð2Þ

where gv is the chemical energy of vacancy per unit vol-

ume and ga the chemical energy of crystal atom per unit

volume. N is the number of atomic sites per unit volume,

kB is the Boltzmann�s constant, and T is the absolute

temperature. The parameter X determines the shape of

g(c). When X > 2kBT, the function has double wells

and drives phase separation. The term j($c)2 represents
the interfacial energy, where j is a material constant.

The first two terms are typical in the Cahn–Hilliard

equation. The ge term represents the elastic energy.

Assume that a stress-free strain, e0dij, emerges when

an atomic site is occupied by a vacancy, where dij is
the Kronecker delta function. A void differs from a solid

precipitate in that it cannot sustain load or store any

elastic energy. It is known that atoms at a solid surface
have a different lattice parameter from those interior

atoms due to the difference in bounding environment.

This causes a misfit between the atoms on the void sur-

face and the interior atoms in the solid. We assume that

the misfit strain takes the form of e0ijðxÞ ¼ 2e0dij
ð1� cðxÞÞcðxÞ, so that the strongest misfit appears at

the void/solid interface, and vanishes in solid or void.

A negative e0 generates a contracting force toward the
center of a void. The contracting force is conceptually

equivalent to surface stress [26], which has been shown

to cause surface reconstruction and monolayer self-

assembly. A positive e0 generates a pressure that is

equivalent to the excess pressure acting on a bubble sur-

face by entrapped gas. Different forms of stress-free

strains may be used. As long as they capture the major

feature that the misfit exists at the interface, the specific
function form is insignificant in the limit of vanishing

interface thickness. Following common practice, we

interpolate the elastic constants of a vacancy–solid com-
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posite by kijlmðxÞ ¼ ð1� cðxÞÞk0ijlm, where k
0
ijlm is the elas-

tic stiffness of solid. The elastic field can be obtained by

the supposition of a uniform field and an inhomoge-

neous perturbation field. The total strain field, eij(x), is
expressed by

eijðxÞ ¼ �eij þ ~eijðxÞ; ð3Þ
where �eij is the uniform strain and ~eijðxÞ is the inhomo-

geneous strain. The uniform strain is the macroscopic

strain of the vacancy–solid composite relative to a va-

cancy-free solid, and is expressed by �eij ¼ eappij þ e0dij�c1,
where eappij is the macroscopic strain due to applied

stress, e0dij�c1 is the average misfit strain over the volume,

and �c1 ¼ ð
R
V 2ð1� cðxÞÞcðxÞ dV Þ=V . The strain eappij re-

lates to the applied stress rapp
lm by eappij ¼ ð�kijlmÞ�1rapp

lm ,
where �kijlm ¼ k0ijlmð1� �cÞ, and �c ¼ ð

R
V cðxÞ dV Þ=V is the

average concentration. The inhomogeneous

strain, ~eijðxÞ, relates to the perturbation displacement,

ui(x), by

~eijðxÞ ¼
1

2

ouiðxÞ
oxj

þ oujðxÞ
oxi

� �
: ð4Þ

The total stress field, rij(x), can be computed by

kijlmðxÞðelmðxÞ � e0lmðxÞÞ, namely

rijðxÞ ¼ k0ijlmð1� cðxÞÞðelmðxÞ � e0lmðxÞÞ: ð5Þ

The system can vary in two ways: elastic deformation

and diffusion [25,27]. The energy variation of Eq. (1)

to the elastic deformation gives the classic equilibrium

equation, orij/oxj = 0. Substitute Eqs. (3)–(5) into this

equation, we obtain

k0ijlm
o2

oxjoxm
� o

oxj
c xð Þ o

oxm

� �� �
ul xð Þ

¼ �rij
oc xð Þ
oxj

þ r0
ij

oc2 xð Þ
oxj

; ð6Þ

where �rij ¼ k0ijlm�elm; r0
ij ¼ k0ijlmdlme0; and c2ðxÞ ¼ 2cðxÞ

ð1� cðxÞÞ2. Taking Fourier transform of Eq. (6), we

have

ûlðkÞ¼�ikjGilðkÞ �rijĉ kð Þþr0
ijĉ2 kð Þþk0ijlm c xð Þoul xð Þ

oxm

� �
k

� �
;

ð7Þ

where the hat denotes Fourier Transform, k is the wave

vector in Fourier space, and GilðkÞ ¼ ðk0ijlmkjkmÞ
�1

is the

Green�s tensor. We solve Eq. (7) by numerical iteration
[28]. The displacement field at the nth iteration is given

by

ûðnÞl ðkÞ ¼ �ikjGilðkÞ
"
�rijĉ kð Þ þ r0

ijĉ2 kð Þ

þk0ijlm c xð Þ ou
n�1ð Þ
l xð Þ
oxm

 !
k

#
: ð8Þ
The initial value in the iteration is taken to be

ûð0Þl ðkÞ ¼ �ikjGilðkÞ½�rijĉðkÞ þ r0
ijĉ2ðkÞ�. The inhomoge-

neous displacement in real space, uðnÞl , is obtained by

the inverse Fourier transform of ûðnÞl . The elastic energy

density is given by ge ¼ kijlmðeij � e0ijÞðelm � e0lmÞ=2.
Now consider the vacancy diffusion. A driving force,

Pi, is defined by the amount of free energy reduction

when a vacancy moves by a unit distance. Following a

similar approach to that in [25], the energy variation

of Eq. (1) to vacancy diffusion gives

P i ¼ � 1

N
r dg

dc
� 2jr2cþ dge

dc

� �
: ð9Þ

The vacancy flux, Ji, is assumed proportional to the

driving force, giving

J i ¼ MPi; ð10Þ

where M is mobility. Combining Eqs. (9) and (10) and

the conservation equation Noc/ot + $ Æ J = 0, we obtain

the diffusion equation

oc
ot

¼ 1

N 2
r �Mr dg

dc
� 2jr2cþ dge

dc

� �
: ð11Þ

The first two terms in the bracket in Eq. (11) is standard

in the Cahn–Hilliard equation [29]. The third term re-

flects the elastic effect. Generally speaking, mobility de-

pends on the local structure and thus the local
concentration. Atoms diffuse much faster at the void/so-

lid interface than in the solid. To emphasize interface

diffusion, we adopt a concentration-dependent mobility

[23,28]. It takes the form of M(c) = c(1 � c)M, where M

is a constant. Thus the mobility reaches maximum at the

void/solid interface and vanishes in pure solid or void.

Eq. (11) then becomes

oc
ot

¼ M

N 2
r � c 1� cð Þr dg

dc
� 2jr2cþ dge

dc

� �
: ð12Þ

Define the length scale by b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4j=3NkBT

p
and the

time-scale by s = j/M(kBT)
2. Normalize the coordinates

by b and the time by s, we obtain a dimensionless diffu-

sion equation,

oc
ot�

¼ 3

4
r � cð1� cÞr dg�

dc
� 1:5r2cþ dg�e

dc

� �
; ð13Þ

where x* = x/b, t* = t/s, g* = g/NkBT and

g�e ¼ ge=NkBT . Applying Fourier transform, the diffu-

sion equation in Fourier space is given by

oĉ
ot�

¼ 3

4
ik � fcð1� cÞ½ikðl̂þ 1:5k2ĉþ l̂eÞ�rgk; ð14Þ

where the subscript �r� denotes inverse Fourier

transform,

l ¼ dg�=dc ¼ lnðc=ð1� cÞÞ þ ð1� 2cÞX=kBT ð15Þ
and
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le ¼ dg�e=dc

¼ � 1

2

k0ijkl
NkBT

ð�eij þ ~eijðxÞÞð�ekl þ ~eklðxÞÞ þ
k0ijkl
NkBT

� ð�eij þ ~eijðxÞÞdkle0ð1� cðxÞÞð3cðxÞ � 1Þ

þ 1

2

k0ijkl
NkBT

dijdkle
2
0cðxÞð2� 5cðxÞÞð1� cðxÞÞ2: ð16Þ

To track the evolution of Eq. (14), we adopt a time

marching scheme that has proved computational

stability [30],

ð1þ aAk4Dt�ÞĉðmÞ ¼ ð1þ aAk4Dt�Þĉðm�1Þ

þ 3

4
Dt�ik � fcðm�1Þð1� cðm�1ÞÞ

� ½ikðl̂ðm�1Þ þ ak2ĉðm�1Þ þ l̂ðm�1Þ
e Þ�rgk;

ð17Þ

where m denotes the mth time step, a = 1.5 is the

dimensionless gradient coefficient, and A is a coefficient

stabilizing time marching scheme. We choose A ¼
1
2
½maxðð1� cÞcÞ þminðð1� cÞcÞ� in our work.
3. Numerical results

Several parameters are required to simulate the dy-
namic evolution of vacancies. We use the material prop-

erties of molybdenum and nickel in the computation.

The gradient coefficient, j, dependents on the lattice

structure and the inter-atomic energy [29]. Its value is

usually estimated by hNkBTr20, where h is a coefficient

dependent on material, and r0 is the nearest neighbor

distance. The magnitude of j is in the order of

10�10 J m�1. In the simulation of molybdenum, we take
j � 2 · 10�10 J m�1, a lattice constant of 3.2 Å, and an

irradiation/annealing temperature of 1100 K. Boltz-

mann�s constant is 1.38 · 10�23 J K�1. Combining these

values, the length scale b for molybdenum is

bMo � 0.53 nm. Similarly, the length scale for nickel,

bNi � 1.3 nm, is obtained by setting j � 1.2 ·
10�9 J m�1, a lattice constant of 3.54 Å, and an irradia-

tion/annealing temperature of 800 K. The elastic con-
Fig. 1. The elastic chemical potential distribu
stants for molybdenum are taken to be C11 = 347.6,

C12 = 121.8 and C44 = 81.5, all in the unit of NkBT.

The elastic constants of nickel are taken to be

C11 = 160.6, C12 = 99.7 and C44 = 81.3, all in the unit

of NkBT. A single vacancy is typically considered to

have a volume of 40% atomic volume of the surrounding
atom. For constrained elastic misfit (in situ misfit), e0 is
usually taken between e/6 and e/3, where e is the volume

shrinkage strain. In our simulation, we take e0 to be

�0.1.

The elastic field affects diffusion through a chemical

potential, le ¼ dg�e=dc. To better understand this effect,

we calculate the elastic field of a two-dimensional

square domain containing a circular high vacancy con-
centration region at the center. The square has a size of

128 · 128 grid points and a concentration of 0.1, while

the circular region has a radius of eight grid points and

a concentration of 0.95. Two situations, molybdenum

and nickel, are calculated. Molybdenum has a bcc

structure and is compliant in the Æ1,1æ directions, while
nickel has fcc structure and is compliant in the Æ1,0æ
directions. The calculations show that the iteration
algorithm of Eq. (8) converges quickly, usually within

four to five iterations. The results are confirmed by fi-

nite element computations. Fig. 1 shows the distribu-

tion of le. Strong anisotropy can be observed. For

molybdenum, the magnitude of le is higher in the

Æ1,0æ directions and lower in the Æ1,1æ directions, as

shown in Fig. 1(a). A vacancy would prefer to stay in

a lower le region, i.e., along the Æ1,1æ directions. A void
is an agglomeration of vacancies. When two voids are

close to each other, they would align along the Æ1,1æ
directions for lower chemical potential. However, for

nickel le is higher in the Æ1,1æ directions and lower in

the Æ1,0æ directions, as shown in Fig. 1(b). Conse-

quently, the voids tend to align along the Æ1,0æ direc-

tions. For both cases, the lower le directions coincide

with the elastic compliant directions, and also the
close-packed directions of the crystals.

A series of simulations are performed for dynamic

void lattice formation and evolution by Eq. (17). The

computation cell is 128 · 128 grid points. The boundary
tion of: (a) molybdenum and (b) nickel.
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conditions are periodic. Our simulation of two voids in an

isotropic medium confirmed the theoretical prediction

based on energetic analysis [14]: they attract each other

and eventually coalesce.Nowconsider the void lattice for-

mation in an anisotropic solid. A large amount of vacan-

cies are generated during the irradiation process.
Experimental observations suggest that the average va-

cancy concentration in a well developed void lattice is

about 0.32. We use random initial condition in the simu-

lation, which has an average of 0.32 and perturbation

amplitude of 0.001. At present, we assume there is no

external loading. In the simulation for molybdenum, we
Fig. 2. The formation and pattern evolution of voids in molybdenum.

(d) t* = 850.08, (e) t* = 892.32, (f) t* = 1016.40, (g) t* = 1201.20 and (h) t* =

Fig. 3. The formation and pattern evolution of voids in nickel. X/kBT = 2.8,

(e) t* = 437.86, (f) t* = 613.22, (g) t* = 869.59 and (h) t* = 1124.36.
use X/kBT = 2.9 and a time step of Dt* = 0.33. Fig. 2

shows the simulation results. It can be observed that or-

dered voids first emerge in several small regions and then

spread throughout entice computation cell. Disordered

voids are also seen during the evolution. However, they

shrink over time and eventually disappear. Voids self-
align along the Æ1,1æ directions, showing almost uniform

size and spacing. We have calculated longer evolution

time beyond Fig. 2(h). The pattern did not change much,

suggesting that further evolution is very slow. The diam-

eter of the voids is about 12 grid spaces, or 6–7 nm. The

superlattice spacing is about 32 grid spaces, or 17–
X/kBT = 2.9, Dt* = 0.33. (a) t* = 0, (b) t* = 799.92, (c) t* = 823.68,

1440.12.

Dt* = 0.533. (a) t* = 0, (b) t* = 386.43, (c) t* = 406.95, (d) t* = 418.67,
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20 nm. Note that the coordinates are normalized by bMo.

The physical length is grid space multiplied by bMo.

Similar simulations were performed for nickel. The

same initial conditions were used. Other parameters

are X/kBT = 2.8 and Dt* = 0.533. The results are shown

in Fig. 3. Similarly, ordered voids loom out in several
small regions and the order expands. Disordered voids

gradually dissolve. The diameters of the voids is about

11 grid spaces, or 14–15 nm. The superlattice spacing

is about 35 grid spaces, or 45–50 nm. The morphology

and length scale of our simulations are consistent with

experiments. We have also simulated void lattice for

copper, where labyrinth-like stripes orientating along

the Æ1,0æ directions are obtained. We find that a host
material with strong elastic anisotropy prefers the for-

mation of defect walls, instead of spherical voids.

Now consider the bubble lattice formation. In the

simulation for molybdenum, we assume that an im-

planted gas atom causes an in situ lattice misfit of

e0 = 0.05 when it occupies a lattice site. This causes a

pressure on bubble surfaces. The irradiation tempera-

ture is taken to be 300 K. At this temperature, the elastic
Fig. 4. The formation and pattern evolution of bubbles in molybdenum.

(d) t* = 369.60, (e) t* = 404.58, (f) t* = 582.78, (g) t* = 803.22 and (h) t* = 9

Fig. 5. The formation and pattern evolution of voids in molybdenum under

and (d) t* = 299.64.
constants of molybdenum are taken to be C11 = 1069.6,

C12 = 374.9 and C44 = 250.7, all in unit of NkBT. We set

the gradient coefficient j to be 0.2 · 10�10 J m�1, which

gives the length scale of bMo � 0.3 nm . Same initial and

boundary conditions are applied. Fig. 4 shows the sim-

ulation results. The evolution process and morphology
are very similar to those in void lattice, except that the

bubbles have smaller sizes.

Simulations are also extended to investigate the influ-

ence of external loadings. A shear loading of

sxy = 2NkBT is applied to the computation cell. This

causes the formation of a slit-like void structure orien-

tating in the [1,1] direction, as shown in Fig. 5. However,

when the load is low, the voids may still have a shape
close to a sphere. This is observed in Fig. 6, which shows

the results for nickel with an applied load of

sxy = 1NkBT. Our simulation with other loading condi-

tions suggest that a small load will shift the orientation

of self-assembled voids, while a large load will also sig-

nificantly influence the void shape. The self-assembled

features may change from spheres, to ellipsoids, and to

slits as the load increases. When a uniaxial load is
X/kBT = 2.9, Dt* = 0.33. (a) t* = 0, (b) t* = 339.24, (c) t* = 351.12,

78.78.

the loading of sxy = 2NkBT. (a) t* = 0, (b) t* = 192.72, (c) t* = 224.40



Fig. 6. The formation and pattern evolution of voids in nickel under the loading of sxy = NkBT. (a) t* = 0, (b) t* = 289.08, (c) t* = 324.72,

(d) t* = 398.31.
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applied along the symmetric directions, such as Æ1,0æ or
Æ1,1æ, a void has a longer dimension in perpendicular to

the load vector. However, a general loading condition is

complicated by the elastic anisotropy, and numerical

simulation is needed.
4. Discussion

In this work, we show that annealing a crystal with

high vacancy content can lead to a self-assembled void

lattice. In experiments, a crystal is put under irradiation

at elevated temperature for a long time for void lattice to

form. The high environmental temperature and irradia-

tion effect significantly increase the mobility of vacan-
cies, allowing them to diffuse over a long distance

during the experimental period. Consequently, an

annealing process may exist and account for the ob-

served phenomena. This paper treats it by an approach

of spinodal decomposition. Accompanying the phase

separation, vacancies diffuse and agglomerate into

voids. The void formation induces elastic interaction,

causing directional preference of vacancies. Conse-
quently, phase separation and anisotropic diffusion are

two significant aspects in self-assembled void lattices.

It is similar for the case of implanted gas agglomerating

into bubbles. From the energetic point of view, phase

separation reduces the mixing energy, but increases the

elastic energy. Our simulations show that when voids/

bubbles self-organize along certain directions, the elastic

energy increase is minimized. Those early forming voids
serve as anchors. Subsequent voids arrange themselves

along specific directions of the anchoring voids, leading

to the observed order spreading phenomena. For the

same reason, unaligned voids shrink and disappear.

Our model suggests that self-ordering may occur only

when voids/bubbles are close enough to within each

other�s elastic influence range. Thus a certain void/bub-

ble density is required to form a superlattice. This might
explain the existence of a threshold of irradiation dose

for void/bubble lattice formation. Temperature has sev-

eral effects. In addition to increasing mobility, an ele-
vated temperature also reduces the elastic stiffness of

host crystals and thus influences the void size. External

loadings are influential to the patterns of void/bubble

superlattices, according to the simulations. Together

with the elastic misfit, the external loadings contribute

to the elastic chemical potential. This implies that the

morphology and size of nanoscale voids/bubbles can
be tuned by altering the loading conditions.

We have demonstrated anisotropic diffusion of point

defects due to material anisotropy from a purely ener-

getic point of view. Kinetically, the mobility may also de-

pend on material structure and be anisotropic. This effect

will be pursued in further study. Our model can be ex-

panded to incorporate structural order parameters and

interface energy anisotropy. This may help to explain
the appearance of some cubical [4] or facet [8] voids.

In summary, we have developed a phase field model

to simulate the void/bubble self-organizing behavior.

In particular, we emphasize the interface misfit. The re-

sults are consistent with experimental observations, and

suggest that void lattices, bubble lattices and labyrinth

defect walls may be explained in the same framework.

Complementing other proposed mechanisms, we show
that phase separation, material anisotropy and anneal-

ing can also produce ordered patterns of voids/bubbles.
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