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a b s t r a c t

Traditional analyses of slip at corners of contacts, based on linear elasticity and a Coulomb friction law,
are very sensitive to the details of local geometries, owing to the effects of elastic singularities. Following
the use of cohesive-zone models to address such issues in mode-II fracture, we present analyses of slip
and wear at corners of contacts when a finite interfacial shear strength is incorporated with a Coulomb
friction law. We show that the concept of an instantaneous cohesive-length scale, borrowed from the
field of fracture mechanics, can be used to describe the nature of stress fields around corners, and defines
when linear-elasticity and Coulomb friction can provide an accurate description of the interfacial
behavior. We also show that the sensitivity of slip analyses to geometrical details decreases when the
cohesive-length scale increases. We also show that the cohesive strength of an interface plays a crucial
role in the propagation of a wear scar across an interface. If only Coulomb slip is assumed to occur, a wear
scar may not progress beyond the original stick-slip boundary. If a finite interfacial shear strength is
introduced into the analysis, the wear scar can propagate along the interface.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

The life of many engineering components can be limited by
fretting wear [1] induced by cyclic slip between two contacting
surfaces [2]. This wear is often initiated at the corners of contacts,
where there are high stresses that can be singular in elastic ana-
lyses. However, an assumption of Coulomb friction in these ana-
lyses leads to a prediction of slip and wear only if the coefficient of
friction, μ is low enough, with the critical value of μ depending on
the details of the corner geometry. Similar issues of sensitivity to
local geometry are inherent for problems of crack propagation in
interfacial fracture mechanics. In that field, cohesive-zone models,
which incorporate the concept of a finite interfacial strength, have
been found to be useful tools to resolve some of the unrealistic
complexities associated with singular stresses, while retaining the
general features of fracture mechanics that make it useful at larger
scales [3–5]. In this paper we apply the insight provided by the
field of interfacial fracture mechanics to interfacial slip, showing
that the assumption of a finite shear-strength changes the slip and
wear behavior at corners in important ways.
: þ1 734 647 3170.
x: þ1 734 647 3170.
The contact across an interface between two bodies can be
described by three regimes of behavior that depend on the geo-
metry and the loads [6]. The first regime is full-stick, where the
interface is effectively bonded across its entire length, and the two
bodies act as a single entity. The second regime is full-slip, where
there is relative motion between the two bodies along the entire
interface. The third regime is partial-slip, where the two materials
slide relative to each other along some parts of the interface, and
are effectively bonded along others. Wear is associated with the
energy dissipated by sliding [6,7], and the analysis of wear
requires modeling the relative slip along the interface between the
two bodies. The full-stick and full-slip regimes can be relatively
easy to describe; partial-stick can provide more of a challenge.
However, this last phenomenon is an important aspect of wear at
the corners of contacts and, therefore, forms the focus of this
study.

Coulomb's law is a common criterion used to determine when
slip occurs. This law states that the magnitude of the interfacial
shear stress, q, is limited by the product of the local applied
pressure across the interface, p, and the coefficient of friction, μ:

q p. 1μ| | ≤ ( )

Slip occurs if this condition cannot be satisfied without allowing a
relative shear displacement across the interface. The coefficient of
friction is generally assumed to be a constant that is characteristic
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Fig. 1. Geometry of a corner with an exterior angle ϕ, and an interface along which
sliding can occur.
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of the interface; if it is assumed to vary, non-linear effects are
introduced [8].

Coulomb's law allows for the possibility of an arbitrarily high
interfacial shear stress, if the local pressure is high enough. Indeed,
Coulomb slip at a corner results in singular shear stresses. This
unphysical result can be avoided by assuming that the magnitude
of the shear stresses is limited by an interfacial shear strength, τ̂ ,
that is independent of local pressure [9,10]. For example, the shear
strength of the contacting materials could provide an upper bound
to this parameter. Local equilibrium then requires a second con-
dition that

q . 2τ| | ≤ ^ ( )

This concept of a single-valued interfacial shear strength is com-
monly used in fiber-composite models [11,12], as well as in thin-
film and composite-laminate cracking problems [3,13].

The stresses along an interface near a corner are generally
singular for elastic bodies in contact. The strength of the singu-
larity depends on the details of the geometry, and is the same for
both the shear stress and the pressure [14–16]. This means that the
ratio of the shear to normal stress is constant near the corner, no
matter how high the stresses are. So, depending on the magnitude
of the friction coefficient, either slip by the Coulomb criterion
occurs everywhere within the singular region, or there is complete
sticking within the singular region. Partial slip occurs when the
Coulomb condition is met within the singular field, but not outside
it. However, the stress field associated with Coulomb slip is still
singular, both the contact pressure and the shear stress increase
without limit as the corner is approached.

The purpose of this paper is to examine how the assumption of
a limiting value for the interfacial shear stress, as given by Eq. (2),
affects slip at the corner of contacts, and how this might influence
the evolution of wear. In the next section we give a brief summary
of how the interfacial stresses near corners depend on geometry
and slip conditions. We then show how these stress distributions
and the slip are affected by the assumption of a finite interface
strength. This is followed by a demonstration of how the sensi-
tivity of slip to details of the corner geometry is reduced by
invoking a finite interfacial strength. The final part of the paper
demonstrates how the assumption of a finite interface strength
can have a significant effect on the evolution of a wear scar,
allowing it to propagate across an interface, rather than arresting
at the initial slip-stick boundary.
1 As can be seen from the definition of the singular stress field, the stress-
intensity factors usually used in the fracture mechanics literature differ from those
used in the friction literature by a factor of 2π .
2. Background

2.1. No slip

In this paper, we consider two elastic bodies with the same
properties, contacting each other along flat surfaces. Fig. 1 shows a
magnified view near the corner of the contact for such a system. If
the interface does not satisfy either of the two slip conditions of
Eqs. (1) and (2), the stresses are given by the elastic solution for a
wedge. Close to the corner, the stresses are singular. For example,
along a line that bisects the corner (Fig. 1), the singular compo-
nents of the normal and shear stresses are given by [17,18]
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where r is the distance from the corner, KI and KII are the mode-I
(symmetrical) and mode-II (anti-symmetrical) stress-intensity
factors, and the strengths of the singularities, Iλ and IIλ , depend on
the exterior angle, ϕ. The two stress-intensity factors depend on
the detailed geometry of the corner, but they also depend on the
macroscopic geometry, and on the applied loads. They are analo-
gous to those used in fracture mechanics, and describe the effects
of the geometry and loads.1

Equation (3) describes the singular stresses along a line that
bisects the exterior angle. Of particular interest are the normal
pressure, p, and shear stress, q, along the interface [18]:
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where x is the distance along the interface (Fig. 1), and f1, f2, g1 and
g2 are functions of ϕ. The geometry we will generally consider in
this paper is one for which ϕ¼90°. For this case, the stresses along
the interface are given by [18]
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2.2. Coulomb slip

A comparison between Eqs. (4) and (1) reveals that slip will
always occur in the singular region at the corner of a contact if

g1μ ϕ< ( ), since Iλ dominates the stress field close to the corner. In
particular, Eq. (5) shows that slip will occur if 0.543μ < for the
right-angled geometry considered in this paper. If the Coulomb
slip condition is met within the singular region, the asymptotic
stress field develops a different singularity, λs, that is a function of
both ϕ and μ. The interfacial stresses close to the corner are then
given by [18]

p x K x

q x K x

,

, 6

s

s

1

1

s

sμ

( ) =

( ) = ( )

λ

λ

−

−

where Ks is a stress-intensity factor that depends on the geometry
and loads. For a right-angled corner, λs is given by the solution to
[19,20]
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Fig. 2. Finite-element mesh of the geometry studied in this paper.

2 E E¯ = in plane stress and E/ 1 2ν( − ) in plane strain, where ν is Poisson's ratio.
In the fracture literature, it makes sense to define E E E E E2 /1 2 1 2¯ = ¯ ¯ ( ¯ + ¯ )⁎ , where the
subscripts refer to the materials on either side of an interface, so Ē is recovered in
the homogeneous case.

3 We simplify the problem in this paper by neglecting any physical limit on the
normal pressure. Therefore, the solutions that follow have singular normal stresses.
These are not expected to influence the slip behavior, but could be accommodated
by an appropriate mode-I cohesive law for the interface. We also ignore the fact
that imaginary components of the stress field can be introduced by elastic mis-
match across an interface [14]. These complications can be resolved by invoking a
cohesive-zone model for the interface [4]. Furthermore, when IIξ is sufficiently
small, it needs to be compared to microstructural or interfacial asperity length
scales, not geometrical scales [3].
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Coulomb slip does not resolve the issue of singular stresses.
Theoretically, even if slip occurs, the shear stresses are infinite at
the corners. Obviously, in practice, the stresses are limited by a
finite strength of the interface. The question addressed in this
paper is the extent to which the assumption of a finite interface
strength affects the slip and wear conditions at the corner of a
contact. This is examined by adapting the concept of cohesive-
zone models for interfacial fracture, where the introduction of
finite strengths allows smooth transitions between regimes in
which singular elastic fields dominate (albeit, limited by the finite
strengths), and regimes where these fields provide very poor
descriptions of the interfacial mechanics.

2.3. Cohesive zones

Linear-elastic fracture mechanics is predicated on an assump-
tion that the only interfacial property controlling fracture is the
interfacial toughness. Cohesive-zone models incorporate a cohe-
sive strength into the description of the interface. Mode-II cohe-
sive laws provide an analogue for sliding problems without
adhesive bonding. For a homogenous system in plane stress, a
nominal mode-II fracture length can be defined as [5,21,22]

E / , 8II IIζ Γ τ= ^ ( )

where E is the modulus, and IIΓ is the mode-II toughness of an
interface. If the nominal fracture length is small compared to any
appropriate geometrical length, then the toughness controls crack
propagation, and the interfacial stresses follow the elastic stress
field close enough to the crack tip for the singularity to be
experienced. If the nominal fracture length is large compared to
any appropriate geometrical length, then the cohesive strength
controls crack propagation, and the interfacial stresses are essen-
tially uniform along much of the interface.

If one assumes there is no fracture associated with slip, the
concept of a nominal fracture length is not useful, because IIΓ is not
defined. However, the concept of a fracture length has been gen-
eralized to the notion of an instantaneous cohesive length, which
has meaning at any point during the loading of an interface [5,3].
For mode-II cracks, this instantaneous cohesive length is given by

E / , 9sII
2

IIoξ δ= ¯ ( )
⁎

where Ē⁎ is the effective modulus of two materials contacting
across an interface (which is E for the plane-stress, homogeneous
case considered here2), δs is the slip distance at the crack tip
(defined as the point where the shear tractions go to zero), and

IIo is the work done in sliding (per unit area) by the shear
tractions at the crack tip.

It appears that this definition of an instantaneous cohesive
length should be useful for slip problems, since there is no refer-
ence to fracture. In particular, if a cohesive slip displacement of
magnitude δs occurs at a critical shear stress of τ̂ , the instanta-
neous cohesive length is given by

E / . 10sIIξ δ τ= ¯ ^ ( )⁎

The instantaneous cohesive length can be compared to the smal-
lest relevant dimension of the system to give a cohesive-length
scale. By analogy to fracture mechanics, the magnitude of this
cohesive-length scale is expected to determine whether slip can be
considered to be small-scale (and controlled by elasticity), or not.
If the ratio is significantly smaller than unity, it is expected that a
portion of the elastic stress field will exhibit the singularity
appropriate to the geometry of the corner. If the cohesive-length
scale is larger, it is expected that the stresses will be constant over
a relatively large portion of the interface. These concepts will be
illustrated in the results that follow.3
3. Numerical model

The results in this paper were generated using a finite-element
model to calculate the stresses and slip along an interface near a
sharp corner. The geometry and mesh used is shown in Fig. 2. It
was a plane-stress model consisting of a rectangular block of
height, h, and length, l, in contact with a large substrate with the
same elastic modulus E. The macroscopic exterior angle between
the block and substrate was always 90°. Attention was focussed on
the left-hand corner of this geometry (the portion of the interface
in which the two objects always remain in contact). We used an
aspect ratio of l h/ 20= , and confirmed that this was large enough
for the solutions that are presented to be unaffected by the right-
hand boundary. We also confirmed that the substrate was deep
enough for the effects of the bottom boundary (which was con-
strained in all directions) to be negligible within a reasonable level
of numerical error. The absolute values of the parameters were
varied to explore the utility of the non-dimensional groups used.
In the results that are presented, only the non-dimensional groups
that affect the results are reported.

The block was subjected to a uniform distributed normal
pressure, p∞, and a uniform distributed tangential stress, q∞. The
normal pressure was applied first as a pre-load, and the tangential
stress was then applied to explore the subsequent slip. The coef-
ficient of friction μ was varied to explore the stick and slip regimes
predicted by Coulomb's law. The cohesive strength of the interface,
τ̂ , was given an infinite value when exploring Coulomb friction,
and a finite value when exploring the effect of a cohesive strength.
Only conditions in which there was no global slip were



Fig. 3. Interface stress distributions with 0.6μ ≥ . Unless the interfacial shear
strength is finite, no slip can occur since 0.543μ > . (a) Distribution of shear stresses
along the interface for three representative cases: (i) no slip, with h/ 0IIξ = , (ii)
small-scale slip, with h/ 0.18IIξ = , and (iii) large-scale slip, with h/ 3.4IIξ = . (b)
Normal stress distributions along the interface for the same three values of h/IIξ . (c)
The corresponding ratios between the shear and normal stresses.

Fig. 4. Interface stress distributions with μ¼0.27. The slip zone controlled by a
finite interfacial shear strength is embedded in the Coulomb slip zone. (a) Dis-
tribution of shear stresses along the interface for three representative cases: (i) no
slip ( h/ 0IIξ = ), (ii) small-scale slip ( h/ 0.08IIξ = ), and (iii) large-scale slip ( h/ 2.5IIξ = ).
(b) Normal stress distributions along the interface for the same three values of h/IIξ .
(c) The corresponding ratios between the shear and normal stresses.
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Fig. 5. Slip-mechanism map showing how the slip mechanism depends on the
coefficient of friction μ and the distance ahead of the corner, for the specific con-
ditions of q p/ 0.25=∞ ∞ . and q/ 4/3τ̂ =∞ . For these conditions, and partial slip, the
corresponding values of h/IIξ are in the range of about 2.4 to 3.4. Below 0.25μ = ,
there is complete slip along the interface.

Fig. 6. Three corners with the same macroscopic geometry as Fig. 2: (a) a 90°
external corner; (b) a 45° external angle for a depth of 0.04 h; (c) a smooth corner
formed by an arc of a circle of radius h meeting the interface at a tangent at a
distance of 0.04 h from the edge.
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considered; no-slip equilibrium conditions were always satisfied
from a macroscopic perspective. In all cases, the contacting bodies
were perfectly elastic, so the only non-linear effects were asso-
ciated with slip at the interface.

The simulations were performed using the commercial finite-
element package ABAQUS. Four-node, bilinear, coupled tempera-
ture-displacement elements (CPE4T) were used. Standard options
available in the package were used for the contact elements [23]. A
master-slave contact was defined along the contact interface; in
every time increment, the slave nodes were adjusted so that there
was no penetration between the contact surfaces. The contact was
formulated according to the “surface-to-surface” option. The par-
ticular method for the discretization was set to the “surface-to-
surface” option, in which the contact conditions are enforced over
neighboring nodes. The slip conditions for Coulomb friction and a
finite shear strength were also set within the usual options
available in the program. However, since very small amounts of
relative motion across an interface can evolve from the finite-
element calculations, a separate sub-routine was used to compare
the values of q and q p/ to τ̂ and μ and to establish whether these
displacements were associated with slip or numerical uncertainty.
This was useful for determining slip-stick boundaries.

In order to capture the singular stress field correctly, we refined
the mesh around the contact corners using a bias seeding. Typi-
cally, the mesh had more than 18,000 elements, with the smallest
elements being refined to a value of 0.002 h. Validation that the
mesh was fine enough was achieved by plotting the stresses along
the interface on a log-log plot, and comparing the slope of the line
close to the interface with the expected dominant singularity. For
example, the numerical solutions resulted in a predicted singu-
larity of 0.544 0.003Iλ = ± for a non-slipping interface, and

0.651 0.001sλ = ± for a slipping interface with μ¼0.27. These are
in excellent agreement with the expected values of 0.5445 and
0.6503, respectively, and confirms that the quality of our mesh and
technique is acceptable to within a very reasonable level of
uncertainty. Once it was confirmed that the strength of the sin-
gularity in the numerical solutions was correct, the values of the
stress-intensity factors could also be found from the plots. For
example, when q p/ 0.25=∞ ∞ , these values are K h p/I

1I =λ −
∞

0.558 0.003± , and K h p/ 0.796 0.001s
1s = ±λ −

∞ for μ¼0.27. Error
bars indicating estimates of our numerical uncertainties have been
included on all the plots.
4. Results and discussion

4.1. Larger coefficients of friction

The distributions of the shear and normal stresses along the
interface are shown in Fig. 3 for a case in which 0.543μ > , so slip
would not occur if only Coulomb friction acted. Since l h/ 1⪢ in these
calculations, the characteristic length scale used to normalize the



Fig. 7. Plots of how the (a) shear stress, (b) normal pressure, and (c) ratio of shear
stress to normal pressure vary along an interface for the three different corners of
Fig. 6, with a coefficient of friction given by 0.34μ = , q p/ 0.25=∞ ∞ , and an infinite
shear strength.

Fig. 8. Plots of how the (a) shear stress, (b) normal pressure, and (c) ratio of shear
stress to normal pressure vary along an interface for the three different corners of
Fig. 6, with a coefficient of friction given by 0.34μ = , q p/ 0.25=∞ ∞ , and q/τ̂ ∞¼4.8.
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Fig. 9. The wear scar is created by adjusting the nodal coordinates of the mesh on
the basis of a wear calculation that results in all contact being lost within the initial
slip zone, after a single cycle of slip.
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parameters in these plots is h. The plot labelled h/ 0IIξ = corres-
ponds to the limiting case of an infinite shear strength. Since there
is no slip, this stress field corresponds to the elastic solution for
the fully bonded case. In particular, the straight-line portion of this
plot has a slope that is in excellent agreement with the expected
singularity of 0.5445Iλ = . The curves for the two non-zero values
of h/IIξ were calculated using different values of the applied
stresses, keeping the values of both q p/∞ ∞ and h/IIξ constant. h/IIξ
was kept constant by trail and error: using the values of δs com-
puted for different values of q E/∞ to determine IIξ . All the stress
plots were coincident for fixed values of both q p/∞ ∞ and h/IIξ . This
indicates that the instantaneous cohesive-length scale provides a
means of characterizing the slip.

Fig. 3 shows that when h/IIξ is reasonably small, slip is
embedded within the singular elastic field, so that the slip can be
described as being small-scale. The instantaneous cohesive-length
scale increases as the extent of slip increases, and large-scale slip
occurs when it extends so far that there is no region where the
stresses exhibit singular behavior. As expected, outside the slip
region, the shear stresses follow the far-field elastic solution. This
behavior is exactly what is expected by analogy to cohesive-zone
models for cracks with similar instantaneous cohesive-length
scales. While the shear stresses are limited by the interfacial
strength near the corner, the normal pressures still show singular
fields, even in the slip region (although the singularity is weaker
than predicted by the no-slip condition). In practice, of course,
these normal stresses will be limited by yield of the contacting
materials.

Whether there is any regime of Coulomb-controlled slip or not
can be seen by looking at the ratio of q p/ , as plotted in Fig. 3(c).
There is a peak in this ratio at the edge of the slip regime. If the
value of μ is greater than the magnitude of this peak, then the
strength-controlled slip regime ends in a region of sticking. If the
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value of μ is smaller than the magnitude of this peak, there will be
two regions of slip: one controlled by the interfacial strength, the
other controlled by Coulomb's law. This peak rises from 0.543 to a
maximum of 0.7470.02, as h/IIξ increases from zero to 0.005. The
peak then falls with a further increase in the cohesive-length scale.

4.2. Smaller coefficients of friction

Fig. 4 shows plots similar to those of Fig. 3, but with a much
smaller friction coefficient of μ¼0.27. This is below the critical
value of 0.543 for this geometry, so Coulomb slip can occur. In
these plots the stresses have been normalized by the stresses for
the singular field with slip, so they are of the form of q K h/ s

1sλ − ,
where 0.6503sλ = is the appropriate singularity for slip with
μ¼0.27 (see Eq. (6)).

In this case, since there is both Coulomb slip and finite-strength
slip, we need to distinguish between the two regions, so as to
obtain the appropriate value of δs needed to evaluate h/IIξ from Eq.
(10). The regions where slip is controlled by τ̂ can be identified
from the regions of constant shear stress in Fig. 4(a). The regimes
of Coulomb slip can be identified from the regions where the ratio
of q p/ μ= in Fig. 4(c). Coulomb slip extended out to beyond the
limits shown in Fig. 4(c), but this was always embedded in the
elastic field corresponding to a stuck (or bonded) interface, with
no influence from the other boundary.

There will always be a regime of strength-limited slip in the
partial slip zone near the corner of a contact. However, as dis-
cussed above, Coulomb slip can also occur just outside this region
before the fully stuck zone is encountered. It is also possible for the
strength-limited slip region to end at a stick region. These different
types of behavior are illustrated in the map of Fig. 5, showing the
effect of μ for one specific value of cohesive strength.

4.3. Sensitivity to corner geometry

One of the major effects of a cohesive zone in fracture is that it
reduces the sensitivity to the details of any defects. Larger cohe-
sive-length scales result in less sensitivity to singularities that
arise in elastic analyses, and are associated with reduced notch
sensitivity [22]. In this section, we examine how a cohesive zone
might affect the sensitivity of slip predictions to the assumed
details of a corner. This is done by examining three different
models, each with the same macroscopic geometry of a contact
with a 90° external angle (Fig. 6), but with different details for the
corner at a smaller length scale. One of these models has a 90°
external angle to the smallest scale of the numerical model.
Another of these geometries has a small notch, so that the actual
angle of contact with the interface is 45°. The last of these geo-
metries has a smooth contact with the interface, formed by the arc
of a circle meeting the interface tangentially. The calculations are
performed for a coefficient of friction given by μ¼0.34 for all three
geometries.

The stresses for the three geometries are shown in Fig. 7 when
there is an infinite shear strength, so slip is controlled by Coulomb
Fig. 10. (a) Shear stress and (b) pressure distributions along the interface ahead
of a wear scar with 0.38μ = , comparing the behavior of an interface that follows
a pure Coulomb law with one that has a finite shear strength. The asymptotic
stress fields correspond to those expected at the tip of an interfacial crack. (c)
The corresponding distributions of the ratio between the shear stress and
pressure. If only a singular Coulomb law is assumed for the interface, the ratio of
the stresses at the crack tip is given by the ratio of K K/II I, which is equal to q p/∞ ∞.
Therefore, there is no partial slip ahead of the wear scar, and, hence, no pro-
pagation of the wear. Conversely, the assumption of finite shear strength, results
in a slip zone being generated ahead of the wear scar. This will lead to further
wear, and the propagation of wear across the contact.
friction only. The extent of slip can be seen most easily from Fig. 7
(c), which shows the ratio of the shear to normal pressure along
the interface. As can be seen in that figure, both the 90° and
smooth corner exhibit Coulomb slip near the corner, with the 90°
corner having a longer slip distance. The 45° corner exhibits
interesting behavior of being stuck at the corner, but with a region
of internal slip.4

The stresses for the same three geometries are shown in Fig. 8
for the case when there is a finite shear strength, assumed to be

q/ 4.8τ̂ =∞ . This fixed value of q/τ̂ ∞ leads to slightly different values
for the instantaneous cohesive-length scales for the three geo-
metries: h/ 0.13IIξ = , 0.24 and 0.21 for the 90°, 45° and smooth
contacts, respectively. As can be seen from Fig. 8(c), the slip con-
ditions are much less sensitive to the precise details of the contact
than in the previous case. Furthermore, the total slip distances at
the corners of these three geometries vary by less than a factor of
50%. When only Coulomb friction operates, there is an order of
magnitude difference in the slip distances, even for the two cases
where slip did occur at the corner.

4.4. Effects of interfacial shear strength on wear propagation

Partial slip can cause wear. This modifies the profile of the
contact surfaces and redistributes the stress. Studies have shown
that if Coulomb's law is assumed for friction, the stick-slip
boundary does not move as wear progresses [24,25]. This can be
rationalized from a fracture-mechanics perspective. The local wear
in the slip region evolves to a crack-like feature. The shear stresses
and normal pressure will, therefore, have an inverse square-root
dependence ahead of the wear scar, with the mode-I and mode-II
stress-intensity factors being proportional to the applied shear and
normal tractions. This means that q p q p/ /= ∞ ∞, so, if the conditions
for macroscopic slip are not met (i.e., q p/ μ<∞ ∞ ), partial-slip in the
singular region ahead of the wear scar will not be occur either.
This is of practical importance, because it would imply that a wear
scar cannot proceed beyond the initial stick-slip boundary. How-
ever, as will be shown in the calculations that follow, a finite shear
strength always results in slip ahead of a crack-like feature, so a
finite interface strength can result in the propagation of a wear
scar across an interface.

To demonstrate this effect, we generated a worn contact
interface and simulated a slip problem. As an example, we used a
model with the dimensions and loading conditions of Fig. 2. The
friction coefficient was set equal to 0.38, and the shear strength
was switched on or off by setting q/τ̂ ∞ equal to either 3 or∞. These
values were chosen to establish a relatively small initial slip zone.
We then developed a wear scar by modeling wear according to
Archard's law [26]:

w Ap ; 11δ= ( )

where A is the wear coefficient, and δ is the nodal slip.5 We
analyzed one cycle of increasing q∞ from zero up to a maximum
value, and back again. We computed the normal pressure and slip
distance at each node in the contact region during each increment
4 The local singularity at a 45° corner has a value of 0.4950Iλ = , and there is
complete stick at the edge if 0.2132μ > . The singular field associated with a small
45° notch within a macroscopic 90° corner, may be embedded within a larger-scale
singular field corresponding to the macroscopic geometry, resulting in the possi-
bility of either full stick or partial internal slip, depending on the value of μ and the
size of the notch. For the geometry shown in Fig. 6(b), there would be no slip
anywhere if μ is greater than about 0.38, whereas the geometry of Fig. 6(a) would
exhibit partial slip for this value of μ.

5 Archard's lawmight be better expressed in terms of q, not p, to account better
for the frictional work done with a finite shear strength. However, this con-
sideration does not matter here, since we focus on whether there is slip, or not, to
determine whether there is wear.
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of a single cycle. We then used Eq. (11) to compute the integrated
wear for each node, and then modified the mesh at the interface to
create a wear scar, using the updating method of fictitious
eigenstrains described in Ref. [27].

A wear scar typically forms during many loading cycles, with
each cycle changing the morphology slightly. We ignored this
aspect of the problem for the purposes of this study, and investi-
gated the limit of the process by scaling the wear coefficient, A, so
that contact was completely lost within the slip zone after just one
cycle of loading. Using the new geometry with this computed wear
scar at the interface (Fig. 9), we examined the stress state along the
interface when q∞ was increased to its original maximum value.

The distributions of the shear stress, normal stress, and the
corresponding ratios of the shear and normal stress are shown in
Fig. 10. With an infinite shear strength, corresponding to Coulomb
slip, the interfacial stresses exhibit a crack-like singularity (inverse
root) for the stresses (note that the normal pressures also exhibit
singular behavior, because the wear scar has some depth). The
ratio of the stresses in the singular field scales with q p/∞ ∞, as might
be expected from a fracture mechanics analysis of the crack pro-
blem. This means that if the coefficient of friction is high enough
to prevent general slip along the interface, it will also prevent
partial slip ahead of a wear scar. This is consistent with the ana-
lysis of Ref. [24], and may suggest a general result that the stick-
slip boundary does not move in response to wear if only Coulomb
friction is assumed.

However, when the calculations are repeated with a finite
shear strength (with q/ 3τ̂ =∞ ), slip occurs ahead of the wear scar.
Again, this is expected by analogy to cohesive zones at crack tips.
This extended zone of partial slip means that a wear scar can
propagate across an interface. Its formation is not limited to the
initial region of partial slip, as would be predicted from an
assumption of only a Coulomb law. This provides an important
example of why the introduction of finite shear strengths can have
a significant role in the analysis of wear at the corners of contacts.
5. Conclusions

The integration of a finite interfacial strength with a Coulomb
friction law has a significant influence on slip and wear at the
corner of a contact. It is possible to define an instantaneous
cohesive length in terms of the modulus, slip distance and inter-
facial strength. A comparison of this length with a characteristic
geometrical scale gives an indication of when small-scale condi-
tions are appropriate, and when the stress field approaching the
corner can be reasonably approximated by the singular field. In
particular, when the instantaneous cohesive-length scale, h/IIξ , is
small, the stresses along the interface near the corner are uniquely
described by

⎛
⎝⎜

⎞
⎠⎟

qh
K

f
x
h h

, , ,
12

1 IIξ
μ=

( )

λ−

where K and λ are functions of μ. For larger values of h/IIξ , the ratio
of q p/∞ ∞ is no longer captured by the stress-intensity factor, so this
becomes an additional non-dimensional group that affects the
stresses.

Cohesive zones have an advantage of capturing the essence of
elastic solutions where they are appropriate, while describing
behavior in the regimes and length scales where elastic solutions
are not valid. As with fracture, the use of cohesive-zone concepts
reduces the sensitivity of the problem to local details of the sin-
gular stress field. Depending on the scale at which a corner is
described, the singular fields and corresponding description of slip
along the interface can be very different for geometries with
similar macroscopic descriptions at a larger scale. The introduction
of a cohesive length reduces this sensitivity.

If there is partial slip, the resulting wear will cause a crack-like
geometry to evolve along the interface up to the slip-stick boundary.
However, with the assumption of Coulomb friction, the wear scar
will not evolve beyond the original partial-slip boundary, as has been
established for the Hertz contact problem [28], in which the normal
stresses are not singular, but the shear stresses are [24]. The intro-
duction of a finite interfacial strength results in the slip-stick
boundary moving with the propagation of wear. This is expected to
be of significance to models of wear, since it allows a wear scar to
propagate across a macroscopically non-slipping contact.
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