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A cohesive-zone analysis for crack propagation in a linear visco-elastic/creeping material is
presented. The concept of a viscous fracture length is defined; this serves an analogous role
to the elastic fracture length in determining the conditions under which fracture is con-
trolled by the continuum crack-tip stress field. It is shown that there are two regimes for
viscous crack growth. The first regime occurs in the limit of small viscous fracture lengths,
when the crack-tip stress field has a region exhibiting the inverse square-root dependence
expected from classical linear fracture mechanics. In this regime, the crack velocity is pro-
portional to the fourth power of the stress-intensity factor. This is consistent with an exist-
ing analytical model developed for crack growth in linear polymers. The second regime
occurs for large viscous fracture lengths, where classical fracture mechanics is not appro-
priate. In this regime, the crack velocity has a weaker dependence on the applied load, and
can be modeled accurately by the solution to the problem of a viscous beam on an elastic
foundation. At higher crack velocities, when the viscous fracture length exceeds the elastic
fracture length, the expected transition to elastic fracture occurs.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Modelling crack growth requires an understanding of which parameters control fracture. For example, linear-elastic frac-
ture mechanics (LEFM) is a continuum model in which crack growth is controlled by an energy criterion; the fracture load
depends only on the modulus, E, the toughness, C, and a dimension describing the physical size of the geometry, h (in addi-
tion to a non-dimensional description of the geometry). Generally speaking, this approach works when there is any region
near the crack tip where the stresses can be described reasonably well by the continuum singular field. However, more gen-
erally, analysis of fracture requires the introduction of an additional parameter. This additional parameter can often be
expressed in terms of a length associated with the fracture process. Sometimes, this length may enter the problem directly
as a length over which the continuum approach breaks down, or as a critical crack-tip displacement for crack propagation. In
cohesive-zone models of fracture, it enters in a dimensional fashion through a cohesive strength r̂, giving an elastic fracture
length defined by EC=r̂2, which has a unit of length.

The original motivation for this study was to determine the fracture parameters that control crack growth in a creeping
solid. We addressed this by conducting a cohesive-zone analysis with a linear visco-elastic material. This analysis shows that,
in contrast to when fracture is controlled by elasticity, there are no conditions under which crack growth can be modeled in a
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Nomenclature

E Young’s modulus
C toughness of interface
h thickness of beams
r̂ cohesive strength of interface
M1 applied moment
Tn normal traction
k spring constant
v displacement
~v non-dimensional displacement, v/h
z distance ahead of crack tip
~z non-dimensional distance ahead of crack tip
bo ð3kh=EÞ1=4
f elastic fracture length
~f elastic fracture length scale, f/h
g uniaxial viscosity
t time
_a crack velocity

ko 12kh2=g _a
� �1=5

fv viscous fracture-length scale
~fv non-dimensional viscous fracture-length scale
_eij strain-rate tensor
v Poisson’s ratio
r0
ij deviatoric stress tensor

C� K2=g where K is the stress-intensity factor
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viscous or creeping material without introducing a fracture length of some description. This is true even in regimes where
the crack-tip stresses exhibit a region that can be described by the continuum singular field. This conclusion is consistent
with the observations of Rice [1], and with the comments of McCartney [2,3] in response to the work of Christensen [4–6].

Time-dependent crack growth has historically been studied in two distinct areas of research: creep rupture of metals and
ceramics, and fracture of polymers. Very different frameworks have been developed in each of these two areas to describe
what is essentially the same problem of time-dependent crack growth. The different perspectives provided by the frame-
works have resulted in what might appear to be contradictory conclusions about whether time-dependence is a desirable
attribute from a fracture perspective or not. The creep-rupture literature tends to describe the problem in terms of how
the time-dependent properties of a material result in sub-critical cracking at low driving forces (an apparent weakening).
Conversely, the polymers literature often tends to describe the problem in terms of how the time-dependent properties
of a material result in an increased rate of energy dissipation (an apparent toughening). This is, of course, merely a manifes-
tation of the classic question of whether one is more interested in the toughness or the strength of a material system.

Crack-growth models for creeping materials are often formulated in terms of the nucleation and growth of damage in the
form of cavities ahead of a crack tip [7–9]. If it is assumed that the damage is embedded within a crack-tip stress field appro-
priate for a creeping solid, its growth can be linked to the deformation of the surrounding material [10–13]. In particular,
crack advance occurs when the crack-tip region has deformed sufficiently to accommodate a critical level of damage, which
may, or may not, be time-dependent. The associated analyses always require the introduction of a characteristic length
beyond any continuum description of the geometry, to ensure dimensional consistency. For example, in the model of Cocks
and Ashby [10], this length scale is the distance over which the damage is assumed to grow under the influence of the crack-
tip stress field.

The results of models for the crack velocity in creeping materials depend on the underlying assumptions about how the
damage interacts with the stress field, and how the stresses evolve at the crack tip. However, the different models share a
common aspect in that the crack velocity depends on the crack-tip loading parameter for creep, C�, which is the time-
dependent analog of the J-integral [14,15]. The effect of creep/viscosity is to cause sub-critical crack growth until the cracks
are long enough for the elastic-fracture criterion to be met, when catastrophic failure can occur. The implication of this per-
spective is that viscosity weakens a material, since it provides a mechanism to accommodate the growth of damage to a crit-
ical value at relatively low loads.

The mechanics of time-dependent fracture of polymers is essentially identical to that of creep rupture. However, much of
the literature often focuses on the concept of a rate-dependent toughness [16–18], rather than on how the crack velocity
varies with loading parameter. The viscous energy dissipated at the crack tip is seen as contributing to the toughness,
and the size of the crack-tip viscous zone depends on the crack velocity [19]. The implication of this perspective is that vis-
cosity toughens a material, since it provides a mechanism to dissipate additional energy at the crack tip.
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An alternative approach used in the polymers literature introduces the concept of finite tractions behind the crack tip,
following the work of Dugdale [20] and Barenblatt [21] for elastic materials. These models, such as those by Knauss [22]
and Schapery [23–25], that include the interaction between a fracture-process zone and the continuum properties of the
material are intellectually related to the damage-models for creep discussed earlier (although the details of the physics,
and the definition of a crack tip may differ). As a result, these models have similar forms of prediction to the creep models,
in that the crack velocity increases to some power of a crack-tip loading parameter.

Cohesive-zone models of fracture represent one way to generalize these concepts into a unified framework. As discussed
in the first paragraph, they automatically provide a suitable length scale to describe creep crack growth through the ratio of
the toughness to the cohesive strength. Numerical analyses of time-dependent fracture using cohesive-zone elements have
been developed for time-dependent [26] and time-independent [27] cohesive-zone models. In this work, we explore crack
growth using a time-independent cohesive-zone model embedded in a visco-elastic material. This is essentially identical to
the assumptions made in the analysis by Rahulkumar et al. [27] in their analysis of the peel test. These authors presented
their results from the polymers perspective in which the toughness is enhanced by viscous dissipation. However, since
we approached the problem from a creep-rupture perspective, our results give a different insight. (However, they are con-
sistent with this earlier work, and can be viewed from that perspective.) Furthermore, by using the simple geometry of a
moment-loaded double-cantilever beam, we have avoided a general complication that the cohesive strength can also affect
the conditions for the propagation of an elastic crack. This permitted a clean relationship between the crack-growth rate and
the cohesive parameters to be developed.

2. Beam analysis

An analytical approximation for a cohesive-zone model with a linear traction-separation law of a double-cantilever beam
(DCB) subjected to an applied moment of M1 (per unit width) can be obtained from the solution for a beam (of unit width)
on an elastic foundation (Fig. 1). Owing to symmetry, and the resultant pure mode-I conditions, only one arm is considered. It
is assumed that the springs are linear elastic with a spring constant k, so that they exert tractions along the beam of
Tn ¼ �kv ; ð1Þ

where v is the displacement of the beam. Failure of the spring occurs when its extension reaches a critical value, so that in
terms of the usual parameters for a cohesive zone, the spring constant can be expressed as
k ¼ r̂2=C; ð2Þ

where r̂ is the cohesive strength, C is the toughness (recognizing that there are two halves to the DCB geometry).

2.1. Elastic analysis

If the beams are elastic, the problem and solution are well-known. The governing equation is
Eh3

12
d4v
dz4

þ r̂2

C
v ¼ 0: ð3Þ
For which a solution is given by Barber [28] as
~v ¼ 2b2
oM1C

r̂2h3 exp�bo~z cos bo~z� sin bo~zð Þ: ð4Þ
Fig. 1. Geometry of a DCB with elastic springs along the interface.
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In this equation, ~v ¼ v=h;~z ¼ z=h, and
bo ¼
3kh
E

� �1=4

¼
ffiffiffi
34

p
~f�1=4;
where f ¼ EC=r̂2 is the elastic fracture length (for plane stress), and ~f ¼ f=h is the corresponding elastic fracture-length scale
[29].

The stresses ahead of the crack are given by rð~zÞ ¼ �Tnð~zÞ. Therefore, using Eqn. (1),
rð~zÞ
r̂

¼ kh~vð~zÞ
r̂

¼ r̂h
C

~vð~zÞ: ð5Þ
The condition for crack propagation can be found by equating the crack-tip stress, rð0Þ to r̂, and substituting the resulting
value of ~vð0Þ ¼ C=r̂h into Eqn. (4):
M1
Ch

¼ 1ffiffiffiffiffiffi
12

p Eh
C

� �1=2

: ð6Þ
This is the well-known result that the fracture condition for a DCB loaded by a pure moment depends only on the toughness,
and is independent of the interfacial cohesive law. (In contrast to the case where the DCB is loaded by a point load [30].)

2.2. Viscous analysis

Using the correspondence principle, this analysis can be repeated for a linear-viscous beam. The deformation is related to
the local bending moment, MðzÞ by
@3v
@z2@t

¼ �12MðzÞ
gh3 ; ð7Þ
where g is the uniaxial viscosity, and h is the thickness of the beam. The moment is related to the tractions by
d2MðzÞ
dz2

¼ �TnðzÞ ¼ kvðzÞ ð8Þ
If the crack is propagating at a constant velocity of _a, so that there is steady-state, a new non-dimensional co-ordinate can be
defined as ~z ¼ ðz� _atÞ=h. Using the non-dimensional displacement, ~v ¼ v=h, Eqns. (7) and (8) can be combined to obtain the
steady-state governing equation for a linear-viscous DCB:
d5~vð~zÞ
d~z5

� 12kh2

g _a
~v ¼ 0: ð9Þ
The solution to this equation is of the form
~vð~zÞ ¼ Aexpb~z; ð10Þ
where
b ¼ � cosðp=5Þ � i sinðp=5Þ½ �ko; b ¼ ko;
and
ko ¼ 12kh2

g _a

 !1=5

¼ 12r̂2h2

gC _a

 !1=5

:

However, only the two roots with a negative real component can contribute to the physical solution, which can be written as
~vð~zÞ ¼ exp�ko~z cosðp=5Þ B1 cos ko~z sinðp=5Þ½ � þ B2 sin ko~z sinðp=5Þ½ �f g: ð11Þ

The two boundary conditions for this problem are (i) the moment at the crack tip is always equal to the applied moment, so
that Mð0Þ ¼ �M1, and (ii) the shear force at the crack tip is 0. Therefore,
d3~v
d~z3

�����
~z¼0

¼ 12M1
gh _a

;

d4~v
d~z4

�����
~z¼0

¼ 0:

ð12Þ
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With these boundary conditions, the solution to the steady-state crack-propagation problem is
1 A c
CEð1�
~vð~zÞ ¼ M1
k3ogh _a

exp�ko~z cosðp=5Þ �12 cos ko~z sinðp=5Þ½ � þ 16:5 sin ko~z sinðp=5Þ½ �f g: ð13Þ
As described above for the elastic case, the stresses ahead of the crack can be found from the traction distribution, and are
given by
rð~zÞ
r̂

¼ kh~vð~zÞ
r̂

¼ r̂h
C

~vð~zÞ: ð14Þ
The steady-state crack velocity can be found by noting that rð0Þ=r̂ ¼ 1 at the crack tip, and by substituting the resulting
value of ~vð0Þ ¼ C=r̂h into Eqn. (13):
_agC
r̂2h2 ¼ 12

M1

r̂h2

� �2:5

: ð15Þ
The term on the left-hand side is defined here as the viscous fracture-length scale, ~fv ¼ fv=h. A dimensional argument can be
used to show that this is the viscous analog of the elastic fracture-length scale, ~f, defined earlier.1

3. Cohesive-zone analysis

Numerical simulations were conducted using the commercial finite-element package ABAQUS, with the cohesive-zone
elements defined through a user-defined subroutine [31]. This cohesive-zone model is a mixed-mode formulation; however,
the symmetry conditions of the DCB geometry ensured that this particular study was pure mode-I. The traction-separation
law was chosen to be rate-independent, and of the form given by Eqn. (1). (A steep linear decay occurred after the cohesive
strength had been reached; the work corresponding to this portion was 0.5% of the work done during the rising portion of the
curve.) The cohesive zone was given a finite thickness, d, corresponding to d=h ¼ 6:7� 10�4.

The constitutive properties of the arms were defined through the ABAQUS subroutine CREEP as
_�ij ¼ ð1þ mÞ _rij

E
� m
E
_rkkdij þ

3r0
ij

2g
; ð16Þ
(using standard tensor notation), where g is the uniaxial viscosity, and r0
ij is the deviatoric stress. So, a Maxwell type of mate-

rial was studied, representing creep, rather than a standard-linear solid with a non-zero fully-relaxed modulus, representing
a polymer. In the numerical calculations that follow, m was set to 0.49999.

The geometry for the finite-element calculations is shown in Fig. 2. The loading couples were applied as a linear distri-
bution of tractions to one end of each beam. The other end of each beamwas clamped far ahead of the crack. The calculations
were implicit, with the elements being first-order, coupled temperature-displacement, plane-stress elements, with reduced
integration points (CPS4RT). To ensure accurate numerical results, the size, lo, of the smallest element at the tip of the crack
needs to be much smaller than the elastic fracture length [29]. In the present case, lo was limited to be no larger than
10�4EC=r̂2. At the lowest crack velocities, this resulted in a mesh size that could be as high as ten times the viscous fracture
length. However, a mesh-sensitivity analysis showed that, even in this range, the results were mesh-insensitive within the
limits of the error bars shown in the figures.

The visco-elastic calculations were done by applying a constant moment. There was an incubation period before the crack
started growing. After a very short transition, the crack reached a steady-state velocity which was measured. The time incre-
ment for the calculations, Dt, was set to satisfy the condition _aDt=lo < 50. Within this limit there was no significant sensi-
tivity of the results to the time increment.

4. Results

4.1. Viscous crack velocity

A dimensional analysis for the problem of a crack growing at the interface between two linear creeping beams shows that
the steady-state crack velocity must be of the form
_ag
C

¼ f
Eh
C

;
C
r̂h

;
M1
Ch

� �
: ð17Þ
This function is plotted in Fig. 3, using results obtained from the cohesive-zone analysis. The asymptotic limit of rapid crack
growth corresponding to elastic fracture, can be seen in this figure at the value of applied moment given by Eqn. (6). At lower
omparison between the elastic and viscous fracture lengths suggests that a definition of a plane-stress visco-elastic fracture length would be given by
exp� _ag=EhÞ=r̂2h for a Maxwell material.



Fig. 2. (a) Double-cantilever beam geometry, with arms of thickness h, used for the cohesive-zone analysis. The initial crack is of length ao=h ¼ 10, and is
loaded by a distribution of forces that gives a pure moment M1 . Linear-hardening cohesive elements with the traction-separation law shown in (b) were
used along the entire bonded interface.

Fig. 3. Non-dimensional crack velocity plotted as a function of applied moment. As the magnitude of the applied moment approaches the value for elastic
fracture, the crack velocity increases without limit. At lower values of the applied moment, the crack velocity depends only on the viscous properties of the
DCB arms, not on the elastic properties.
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levels of the applied moment, there is a viscous dominated regime, in which the first term on the right-hand side of Eqn. (17)
can be neglected. Dimensional considerations show that this viscous regime is expected to occur when _ag=Eh � 1, corre-
sponding to the viscous fracture length being much smaller than the elastic fracture length.
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Fig. 3 shows that there is a power-law relationship between the crack velocity and applied moment in the viscous regime.
However, the power law depends on C=r̂h, and only matches the value of 2.5 given by the analytical solution of Eqn. (15) for
larger values of that parameter. This issue was investigated further by a detailed non-dimensional study of cohesive-zone
results for the crack velocity in the viscous regime. It was found empirically that, when non-dimensionalized as
2 A d
_agC
r̂2h2 ¼ f

M1

r̂h2

� �
; ð18Þ
the crack velocity can be expressed as a function of a single non-dimensional group, instead of the two non-dimensional
groups predicted by Eqn. (17).

The master curve that arises from the normalization described above is shown in Fig. 4. It will be seen that the analytical
result from beam theory (Eqn. (15)) is valid when the viscous fracture-length scale is greater than unity. For smaller viscous
fracture-length scales, an empirical fit to the data suggests that
_agC
r̂2h2 � 70

M1

r̂h2

� �4

: ð19Þ
The fact that there are two regimes of behavior, depending on the fracture-length scale, is very reminiscent of what is
seen with elastic fracture. In elastic fracture, small fracture-length scales correspond to a regime of toughness-controlled
fracture, with the stress fields exhibiting a region over which the stresses follow an inverse square-root dependence on
the distance ahead of a crack tip. Conversely, large fracture-length scales correspond to a regime of strength-controlled frac-
ture, and the crack-tip stress fields have no region over which there is an inverse square-root dependence. This generaliza-
tion is complicated in the special case of a moment-loaded double-cantilever beam, because the elastic fracture strength
depends only on toughness; the cohesive strength does not affect the conditions for fracture in a DCB loaded in this fashion.
However, as will be shown below, the general effect of fracture-length scales on crack-tip stress fields can be demonstrated
with this geometry.

4.2. Crack-tip stresses

For any specified form of cohesive law, the normal stresses ahead of a crack in an elastic double-cantilever-beam geom-
etry can be expressed as2
r
r̂
¼ f

z
h
;
M1

r̂h2 ;
EC
r̂2h

� �
: ð20Þ
In the special case of a linear traction-separation law for the cohesive zone, this reduces to [32]
r=r̂ ¼ f ~z;~f
� �

: ð21Þ
In the limit of ~f going to zero, the linear-elastic solution predicts that the stresses scale with ~z�0:5 close to the crack tip. As
~f increases, the region over which the stresses follow an inverse-square-root relationship moves away from the crack tip and
decreases in size. Eventually, when ~f is greater than about 0.4, there is no region over which the stresses show any inverse-
square-root dependency [33,32]. This can be seen in the results of Fig. 5, where the stress distributions from cohesive-zone
analyses for relatively small and large values of ~f are compared to the LEFM stress field. Superimposed on these plots are the
corresponding stress distributions of Eqn. (5). It will be seen from these plots that elastic-foundation analyses provide very
accurate results for stress distributions if the fracture-length scale is large. However, they do not capture the singular fields
appropriate for small fracture-length scales.

The normal stresses ahead of a crack in a viscous double-cantilever-beam geometry can be expressed in a similar form to
Eqn. (21); they depend only on ~z and ~fv . These stresses are shown in Fig. 6, and it can be seen that they have an analogous
form to the stresses ahead of a crack in an elastic geometry. The viscous-beam solution provides a good description of the
stresses ahead of a crack when the viscous fracture-length scale is large, but does not do so for small values. The inverse
square-root singular field that is expected for a linear material when ~fv is small, is not captured by the beam solution,
but it is captured by the cohesive-zone model. Conversely, when ~fv is large, beam theory does describe the stress field rea-
sonably accurately, agreeing with the cohesive-zone model.

5. Discussion

A summary of the three different regimes of visco-elastic creep-crack growth can be seen in Fig. 7. In this particular geom-
etry, the elastic fracture condition is given by the LEFM solution of Eqn. (6), irrespective of the fracture-length scale. There-
fore, if
imensional analysis suggests there should be four groups, but the use of the fracture-length scale allows two of the groups to be combined.



Fig. 4. Non-dimensional crack velocity (viscous fracture-length scale) plotted as a function of applied moment in the viscous regime, showing two regimes
of behavior. The transition between these two regimes of behavior occurs when the viscous fracture-length scale is approximately equal to one. The data
plotted in this figure represent a range of different combinations of the two non-dimensional groups that are not represented on the axes of the figure.
While doing the calculations, the parameters were kept in a range that ensured viscous crack growth, with Eh=C being between 2:5� 107 and 5� 1010, and
C=r̂h being between 10�5 and 5� 10�3.
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M1

r̂h2 >
1ffiffiffiffiffiffi
12

p EC
r̂2h

� �1=2

; ð22Þ
there is no equilibrium solution, and the crack must propagate dynamically. As the applied bending moment approaches this

limiting value, the crack velocity increases dramatically. IfM1=r̂h2 is significantly below this value, then the crack velocity is
given by either Eqn. (15) or Eqn. (19):
_agC
r̂2h2 ¼ 12

M1

r̂h2

� �2:5

; if
_agC
r̂2h2 > 1

_agC
r̂2h2 � 70

M1

r̂h2

� �4

; if
_agC
r̂2h2 < 0:1;
with a transition between the two limits. Both behaviors will only be observed for relatively tough materials. For example,
Fig. 7 shows that brittle materials exhibit only the second type of viscous crack growth when elastic fracture occurs at too
low a value of the applied moment.

In small-scale damage-zone models of creep-rupture in linear materials, the crack velocity is predicted to be proportional
to K, the stress-intensity factor (where, K ¼

ffiffiffiffiffiffiffiffi
gC�p

). For example, the model of Cocks and Ashby [10] gives a crack velocity of
g _a
C

¼
ffiffiffiffi
2
p

r
Kr1=2o

�cC
; ð23Þ
where ro is the length of the damage zone, and �c is the critical strain for material at the crack tip. For the geometry modeled
in this paper, the stress-intensity factor is given by
K2 ¼ 12M2
o=h

3
: ð24Þ
Therefore, when the viscous fracture-length scale is small and the stress field has a region over which the stresses follow an
inverse square-root dependence, the crack velocity should depend on K. Under these conditions, one can use Eqns. ( 19) and
(24) to show that
g _a
C

¼ 0:5
K2

Cr̂

 !2

: ð25Þ
As expected for this limit, the geometrical parameters enter the description of the problem only through the stress-intensity
factor, and do not otherwise affect the crack velocity.



Fig. 5. Comparison between the stress distributions ahead of a crack in an elastic double-cantilever beam, using the results from a cohesive-zone model and
an elastic foundation model. (a) A relatively small elastic fracture-length scale of ~f ¼ 0:01, and (b) a relatively large elastic fracture-length scale of ~f ¼ 3:3.
No other dimensionless groups affect the stress distributions. The oscillations correspond to alternating regions of tension and compression, as expected for
a beam loaded by a pure moment with no net force normal to the crack plane.
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Although both the small-scale damage model and the cohesive-zone model with a small fracture-length scale emphasize
how the geometrical parameters affect the crack velocity only through the stress-intensity factor, the dependence on K is
different for the two models. One reason for this discrepancy may arise from how the characteristic length for fracture is
introduced in both models. In the creep-rupture model, it is introduced as a material constant, ro. In the cohesive-zone
model, the viscous fracture-length scale is a variable that depends on the crack velocity.

Schapery [23–25] developed an analytical model for crack growth in visco-elastic materials. This analysis assumed a crack
tip with a singular stress field, and a small-scale region of non-linear and finite cohesive tractions behind it. This is analogous
to a perspective in which a damage zone ahead of a crack tip is viewed as a bridging zone behind a crack tip, with the arbi-
trariness of such a distinction becoming obvious in a cohesive-zone model [32]. Eq. 56 in Ref. [24] can be expressed in terms
of the parameters used in this paper:
g _a
C

¼ 0:8p
3

K2

CrmI1

 !2

: ð26Þ
In this equation, the quantity rmI1 is identified as a second fracture parameter, with rm being the maximum stress in the
bridging zone behind the crack tip, and I1 being a numerical constant that relates K and rm to the size of the non-linear zone
behind the crack tip.



Fig. 6. Comparison between the stress distributions ahead of a crack in an viscous double-cantilever beam, using the results from a cohesive-zone model
and an elastic foundation model. (a) A relatively small viscous fracture-length scale of ~fv ¼ 0:0034, and (b) a relatively large viscous fracture-length scales of
~fv ¼ 7:6. For both of these calculations, the elastic fracture-length scale was equal to 250, which is much larger than the viscous fracture-length scales.
Therefore, both sets of results are well within the viscous limit.
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If one assumes that rm is the analytical model can be identified with r̂ in the present linear-hardening cohesive-zone
model, a comparison between Eqns. (25) and (26) shows that a value of I21 ¼ 1:6p=3 would give an exact match between
the two solutions. I1 is related to the length of the non-linear zone behind the crack tip, a, through [24]
a ¼ p=2ð Þ K=rmI1ð Þ2: ð27Þ
Therefore, using the value of I1 given above, this quantity a can be equated to the viscous fracture-length scale as
a=h � 1:3
ffiffiffiffiffi
~fv

q
: ð28Þ
There is no singular crack tip in a cohesive zone model, so making a rigorous connection to a is not possible. However, it is of
interest to note from Fig. 6(a) that the distance from the crack tip over which the stresses can be described by an inverse-
square-root field is 0:03 6 z=h 6 0:06, compared to a value of a=h ¼ 0:08, when ~fv ¼ 0:0034.

The polymers literature also presents alternative perspectives in which the crack velocity is related to an effective tough-
ness that includes a viscous dissipation term. For example, the cohesive-zone analysis of Rahulkumar et al. [27] shows that
the peak dissipation (and maximum effective toughness) occurs at intermediate crack velocities. At high and low velocities,
the crack-tip material is loaded in the unrelaxed and relaxed elastic regimes, so there is limited viscous dissipation, and the
effective toughness tends to the intrinsic toughness, C. A similar calculation for the viscous dissipation in the present model



Fig. 7. A summary of the three different crack-growth regimes, showing elastic fracture, crack growth at large viscous fracture lengths, and crack growth at
small viscous fracture lengths. The crack velocity increases significantly as the applied moment approaches the critical moment for elastic fracture.
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shows that the effective toughness increases without limit as the crack speed decreases, as would be expected for a system in
which the fully-relaxed modulus is zero.

In the light of this discussion, one can appreciate how a standard-linear solid might behave if approached from the van-
tage point of the present paper. Two elastic fracture-length scales would be introduced: an unrelaxed fracture-length scale,
fu ¼ EuC=r̂2h. where Eu is the unrelaxed modulus, and a fully-relaxed fracture-length scale, fr ¼ ErC=r̂2h. where Er is the
fully relaxed modulus. From Eqn. (6), it can be seen that there can be no crack propagation when
M1

r̂h2 <

ffiffiffiffiffiffi
fr
12

r
: ð29Þ
Above this value, the slower mode of viscous crack growth will be observed only if fr < 0:45, and the faster mode of viscous
crack growth will be observed only if fu > 1:6. A further exploration of this topic is beyond the scope of the present paper,
although the general notion that there is an upper and lower bound for elastic crack growth is consistent with the results of
Rahulkumar et al. [27].
6. Conclusions

A cohesive-zone analysis of linear visco-elastic crack growth for a double-cantilever-beam geometry shows three distinct
regimes of behavior. At low velocities, corresponding to small viscous fracture lengths when the crack-tip stress field is con-
trolled by the stress-intensity factor, the crack velocity scales with K4. This regime has the same characteristics as an earlier
analytical model for K-field dominated crack growth in polymers [23,24]. At higher crack velocities, corresponding to higher
viscous fracture lengths, the stress field can be modeled as a viscous beam on an elastic foundation. Under these conditions,
there is no inverse square-root stress field, and the crack velocity grows with a much lower dependence on the applied load.
At very high loads, there is a transition towards elastic fracture with a dramatic increases in the crack velocity.

The results in this study have been presented for a simple geometry that exhibits a steady state, and for which the elastic-
fracture condition is independent of the fracture-length scale. This ensures that the elastic fracture condition is uniquely
described by the toughness only. There will be an even richer behavior for visco-elastic crack growth in more general geome-
tries, for which the elastic-fracture condition depends on the elastic fracture-length scale. It is further noted that a more gen-
eral visco-elastic model, with a non-zero relaxed modulus, is expected to truncate the viscous crack growth at low velocities,
providing a threshold for crack growth.

The results in this paper have been presented from a perspective commonly used in creep-rupture. From this perspective,
viscosity serves to make a material weak, causing sub-critical crack growth when the loads are lower than those required to
cause elastic fracture. However, it is noted that the results are consistent with a common polymers perspective in which the
apparent toughness increases as the crack velocity decreases, owing to the increase in viscous dissipation. Rather than mak-
ing the material weak, viscosity can be seen to make the material tougher. Obviously, this dichotomy in the two perspectives
is a long-standing one, and the question of whether one might prefer a tough but weak material or a strong but brittle mate-
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rial depends on the application. However, the numerical crack-propagation model presented here, in which the crack veloc-
ity can be related to both the applied load and the energy dissipation, serves as a nice illustration of the issue.

Finally, it is noted that the analysis presented in this paper follows an assumption commonly used in both the creep-
rupture and polymer-fracture literature, of assuming that the rate-controlling time dependence arises from the bulk defor-
mation of the material, not from the fracture phenomena. The fracture processes have been assumed to be rate-independent.
Cohesive-zone models that incorporate rate dependences for both the bulk deformation and the fracture process are cer-
tainly possible, but beyond the scope of the present paper. One can however, get a sense of how the rate dependence of either
the toughness or the cohesive strength might affect the crack velocity, by using the current results and making suitable
assumptions about how both parameters might change with crack velocity.
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