Nanoscale Probing of Interaction in Atomically Thin Layered Materials

Hossein Rokni and Wei Lu*

Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States

Supporting Information

ABSTRACT: We combine conductive atomic force microscopy (CAFM) and molecular dynamics (MD) simulations to reveal the interaction of atomically thin layered materials (ATLMs) down to nanoscale lateral dimension. The setup also allows quantifying, for the first time, the effect of layer number and electric field on the dielectric constant of ATLMs with few-layer down to monolayer thickness. Our CAFM-assisted electrostatic technique shows that high-quality mono- and bilayer graphene is reliably produced at significant yields only by the shear type of bond breaking between layers, whereas the normal type of bond breaking exhibits a very stochastic process mainly due to the coexistence of local delamination and interlayer twist. Our dielectric constant measurements also reveal a very weak dependence on the layer number and the electric field (up to our experimental limit of 0.1 V/Å), which is in contrast with theoretical reports. Owing to unexpectedly large variations in the screening ability of pristine monolayer graphene under ambient conditions, we further demonstrate that the effective dielectric constant of monolayer graphene can be engineered to provide a broad spectrum of dielectric responses (3.5–17) through oxidation and thermal annealing, thus confirming its much higher chemical reactivity than bilayer and few layers.

Layered materials, such as graphene, MoS₂, BN, and many others, are recognized as a distinct class of anisotropic solids with strong chemical bonds within each layer but weak van der Waals (vdW) interaction between the layers. This weak interlayer interaction allows them to be easily sheared parallel and/or expanded normal to the layer surface, leading to the generation of so-called atomically thin layered materials (ATLMs) with few-layer down to monolayer thickness. ATLMs display unique electrical, mechanical, electrochemical, and optical properties that are not essentially observed in their bulk layered counterparts. Therefore, over the past decade, two distinct strategies have been pursued for the synthesis of ATLMs: a top-down and a bottom-up approach. The former generally aims at overcoming the vdW forces between the adjacent layers for the exfoliation of ATLMs from their bulk crystals through mechanical (e.g., Scotch tape exfoliation,[1,2] nanoimprint-assisted shear exfoliation,[3] and electrostatic force assisted exfoliation[4–6]), chemical (e.g., liquid phase exfoliation,[7,8]) and electrochemical (e.g., ion/compound intercalations[9]) processes. On the other hand, the bottom-up method depends on the chemical reaction of molecular building blocks to form covalently linked 2D networks by means of catalytic (e.g., chemical vapor deposition, CVD[10,11]), thermal (e.g., epitaxial growth[12,13]) or chemical (organic synthesis[14]) processes. Since ATLM samples with transfer-induced residues and randomly distributed nanoflakes (mainly due to the formation of defects and grain boundaries during the growth process) are inevitable in the bottom-up method, it can be expected that the highest quality samples are still produced by the top-down methods, where individual or combined external normal and lateral shear forces (applied in a direction perpendicular or parallel to the basal plane of the ATLMs, respectively) play a dominant role during the bond breaking process between layers. However, a detailed understanding of the interlayer behavior of the ATLMs under precisely controlled normal and shear loadings is still missing and thus highly desired as an essential step toward enhancing the transfer efficiency and thickness uniformity of ATLMs-based device features and controlling the number of printed flakes onto the substrate more effectively.

Received: December 7, 2017
Published: February 12, 2018

© 2018 American Chemical Society

DOI: 10.1021/acscentsci.7b00590
ACS Cent. Sci. 2018, 4, 288–297

This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
We exploit for the first time conductive atomic force microscopy (CAFM) with ultrahigh force—displacement resolution combined with molecular dynamics (MD) calculations to unravel the relative contributions of electrostatic attraction/repulsion, internal layer-to-layer shear, and intermolecular vdW forces to the exfoliation of the ATLMs in general and graphite specifically. Our CAFM measurements together with MD analysis of the electrostatic exfoliation mechanism suggest that anisotropic nature of the vdW interactions in the few-layer graphene (FLG) is the main barrier to the accurate control of the number of printed flakes. In particular, simultaneous monitoring of the interlayer spacing and the relative twist in FLG shows that as the interlayer spacing between the layers increases during the normal exfoliation process, their attractive vdW interaction becomes progressively weaker and weaker, allowing them more freedom to locally delaminate and thus twist relative to one another, followed by the layer sliding and separation. This facile twisting of FLG mainly triggered by the random formation of the local delamination in the normal exfoliation technique results in a random angle of rotation between the adjacent commensurate graphene flakes, making accurate control of the number of printed flakes extremely difficult, if not impossible. On the other hand, the shear exfoliation technique exhibits a very promising and controllable behavior during the printing process by eliminating the interlayer spacing variations and consequently reducing the interlayer twist angles. We also demonstrate for the first time that the relative dielectric constant of FLG is nearly independent of the layer number and the external electric field (up to our experimental limit of 0.1 V/Å), which is in obvious contrast with theoretical models in the literature. Interestingly, our dielectric constant measurements on monolayer graphene show a strong dependence on the surface reaction, which makes it an excellent electric field/charge screening material upon oxidation, and recover its charge storage capability upon thermal annealing. On the other hand, bilayer graphene and FLG exhibit very high oxidation resistance and thus are a better choice for long-term stable electronic devices with higher moisture and oxygen resistance.

RESULTS AND DISCUSSION

Figure 1a presents a schematic illustration of the CAFM-assisted electrostatic manipulation setup, in which an electrically conducting Pt/Ir-coated AFM tip is used in contact mode to perform all measurements. For the scope of this paper, we focus on the exfoliation and characterization of graphene as a model system for other ATLMs. After nanostructure fabrication of 75 nm deep cylindrical mesas with a diameter of 60 nm from highly oriented pyrolytic graphite (HOPG), we utilize an in situ flattened AFM tip to uniformly adhere the selected HOPG mesa to the tip apex with a conductive adhesive polymer PEDOT:PSS(α-sorbitol). The tip with an attached mesa is then brought into contact with the SiO$_2$/Si substrate, followed by applying a bias voltage of up to 10 V between the mesa and the highly doped Si substrate, separated by the 10 nm thick SiO$_2$ film. Pristine graphene monolayers subjected to attractive electrostatic forces are transferred from the mesa onto the SiO$_2$ film as the tip is gently moved away from the SiO$_2$/Si substrate in a direction normal to the basal plane (hereafter referred to simply as normal exfoliation method) or parallel to the basal plane of graphite (referred to as shear exfoliation method). An atomically well-defined contact formed between the mesa and the substrate combined with piconewton force and sub-nanometer displacement resolution in our CAFM setup facilitates the precise evaluation of both the applied force and the vertical/lateral displacement of the mesa with respect to the substrate during the exfoliation process (see Methods and Supporting Information section S1 for more details).

In our proposed setup, the exfoliation of FLG features is a combined action of the electrostatic force, applied normal load (being used to improve the conformity of the mesa to the underlying substrate morphology), van der Waals force (due to the substrate—graphene interfacial adhesion and graphene—graphene interlayer cohesion), sliding/retraction speed of the tip, surface properties of SiO$_2$, and ambient conditions. To narrow down the range of possible experimental parameters, we carry out all measurements on the same SiO$_2$ film at zero normal load with a relative tip—substrate speed of 10 nm/s under a clean and controlled environment (20% relative humidity at 21 °C). Our preliminary shear and normal printing measurements in the absence of bias voltage reveal no graphene exfoliation under the aforementioned experimental conditions, allowing us to elucidate the key role of the electrostatic and interlayer vdW forces in the subsequent electrostatic exfoliation process.

The histograms in Figures 1b and 1c show the number of printed layers as a function of the bias voltage using the shear and normal exfoliation techniques, respectively. Raman spectroscopy coupled with AFM height profile measurements is
used to determine the layer number with monolayer accuracy. Ten measurements are taken for each applied bias voltage. It is evident from Figures 1b and 1c that the shear exfoliation method produces only 1–3 layers (predominantly mono- and bilayer graphene) at different bias voltages (Figure 1d), whereas the normal exfoliation method yields graphene flakes of various thicknesses (ranging from 1 to ~20 layers) in a very stochastic manner (Figure 1e). We will later show in our analysis of the MD trajectories that the weaker interlayer cohesion during the normal exfoliation process facilitates the localized delamination, thereby triggering the relative twist between the adjacent commensurate graphene flakes and thus making accurate control of the number of printed flakes almost inaccessible. In contrast, the shear exfoliation method exhibits much more robust sliding behavior with the slight change in the interlayer twist angles due to enhanced corrugation of the interlayer potential energy. Figure 1d also shows the SEM image of mono-, bi-, and trilayer graphene flakes printed by the shear exfoliation method in the form of the letter “M” at V = 10 V, further indicating its versatility for the production of graphene flakes with high crystalline quality and uniform thickness (see the inset of Figure 1d). We note that, regardless of the applied bias voltage, an unexpectedly thick mesa might be produced by the shear exfoliation method provided that any twist grain boundaries exist along the thickness (the shear exfoliation method provided that any twist grain bias voltage, an unexpectedly thick mesa might be produced by exfoliation method in the form of the letter f further indicating its versatility for the production of graphene potential energy. Figure 1d also shows the SEM image of twist angles due to enhanced corrugation of the interlayer robust sliding behavior with the slight change in the interlayer in the inset of Figure 1d). We note that, regardless of the applied bias voltage, an unexpectedly thick mesa might be produced by exfoliation method in the form of the letter f further indicating its versatility for the production of graphene potential energy. Figure 1d also shows the SEM image of twist angles due to enhanced corrugation of the interlayer robust sliding behavior with the slight change in the interlayer.

To investigate the atomistic details underlying our experimental results, we first need to correctly understand the role of the number of layers in the dielectric screening properties of FLG flakes. Despite the importance of such a fundamental property for any electronic material, there have been very limited studies with significant diversity in the reported values of the dielectric constant of graphitic systems, ranging from 2 to 1628–23 (Table S1). Surprisingly, however, there is no direct experimental evidence for the dependence of the dielectric constant of FLG on the layer number under relatively low and high bias voltages. The application of the bias voltage ≤3 V makes the dielectric response extremely weak in our setup. The dashed line is a guide to the eyes and represents the dielectric constant of the bulk HOPG. (f) Dependence of the relative dielectric constant of 1–3LG and bulk HOPG on oxygen reaction at V = 10 V.
sweeping the bias voltage between −3 and 3 V on the sample surface at different tip–sample distances. The total force can be given by

$$F(z, V, \epsilon_r) = -\frac{1}{2} \frac{\partial C(z, \epsilon_r)}{\partial z} [V - V_{CPD}(z)]^2 + F_{adv}(z)$$

(1)

where the first term represents the electrostatic force. This parabolic equation with three fitting parameters $\partial C(\epsilon_r, V_{CPD}$ and F_{adv}) is used to fit F–V curves, such as the ones shown in Figure 2c on a 4LG/SiO$_2$/Si sample. It is evident from the offset of the parabolic F–V curves along the y-axis that the contribution of F_{adv} to the total force is negligible when a bias voltage is applied, in particular, at $z > 10$ nm. Hence, throughout the experiments described in the following, we scan over the sample from a distance farther than 10 nm to only measure the electrostatic force. The fitting parameter V_{CPD} also reveals a dependence on the tip–sample distance in such a way that V_{CPD} of 4LG varies from 294 mV (at $z = 6.1$ nm) to 342 mV (at $z = 19.7$ nm). Using this method, we measured in Figure 2b V_{CPD} between the tip and sample surface along the same green line in Figure 2a at $z = 10$ nm, clearly indicating the layer-dependent surface potentials in FLG up to four layers.

In order to precisely quantify the relative dielectric constant of FLG, the electrostatic force acting on the tip needs to be calculated by integrating the Maxwell stress tensor over the surface of the probe. Since an accurate analytical model that can exactly reproduce the tip–sample electrostatic interaction is not available, we carry out three-dimensional (3D) finite element electrostatic simulations using COMSOL Multiphysics (AC/DC Electrostatics module) to calculate the Maxwell stress tensor from the electrostatic potential distribution (bottom inset of Figure 2d) obtained by solving the Poisson equation in a cylindrical space (Supporting Information section S2). We first calibrate the apex geometry of the probe by taking electrostatic force–distance (F_{ad}–z) curves on a conductive surface (e.g., highly doped silicon or HOPG) close to the graphene flakes. However, we note that only local electrostatic force at the tip apex depends strongly on the tip–sample distance within the range 10–150 nm and thus the global electrostatic contribution from the cantilever shank and the cone is negligible. As such, in Figure 2d the electrostatic force on the tip apex is obtained by subtracting the electrostatic force of the cantilever shank/cone at $z > 200$ nm from the total force. All F_{ad}–z curves were fitted with our finite-element calculations over a 10–150 nm tip–sample distance at $V = 10$ V, using the effective apex radius R as the only fitting parameter, while the nominal half cone angle was fixed at $\theta = 15^\circ$. From ten F_{ad}–z measurements (similar to the one shown in Figure 2d on the bare silicon surface), we found R to be 28 ± 0.5 nm, which is consistent with the nominal value ~ 20 nm provided by the manufacturer.

After V_{CPD} and R were determined as a prerequisite for the accurate quantification of the dielectric constant of the FLG, we next measure the F_{ad}–z curves on the graphene flake of different thicknesses, followed by matching the finite-element results to the experimental data using the only fitting parameter ϵ_r. We illustrate in Figure 2d the F_{ad}–z curves on the bare silicon (for the sake of tip calibration), on the 10 nm thick SiO$_2$ (for comparison purposes), and on the 28LG (a thicker flake was chosen for more clarity in the figure). From several measurements on different areas of the sample, we obtain $\epsilon_r = 20.1 \pm 1.9$ for the 28LG and $\epsilon_r = 3.86 \pm 0.67$ for the ultrathin SiO$_2$ film (in good agreement with the corresponding bulk material, 3.8–4 and ultrathin films, $\sim 4 \pm 0.9$). For further comparison, we revisited the dielectric constant of SWCNTs on 2 nm thick SiO$_2$/Si substrate, reported by Lu et al. using a combination of scanning force microscopy and finite element electrostatic simulations. As shown in Figure S8, 3D modeling of an SWCNT of diameter 3 nm as a hollow cylinder rather than a solid cylinder leads to the dielectric constant of ~ 22.5, which is more than twice as large as that of a solid SWCNT of the same diameter. This modified value for the dielectric constant of SWCNTs is more consistent with that of 28LG.

We now perform a series of similar dielectric measurements on the 1–8 LG of Figure 2a under ambient conditions, and the extracted dielectric constants are shown in Figure 2e. Although the dielectric screening ability of 1LG is relatively weaker (~20%) than that of bulk HOPG, the overall dielectric response of FLG samples to the external electric field is almost independent of the number of layers. Interestingly, the presence of a relatively strong electric field of $E = 0.1$ V/Å (or equivalently 10 V/10 nm) does not show any systematic change in the dielectric response of FLG. These observations are in sharp contrast with density functional theory (DFT) calculations of effective dielectric constant of freestanding 2–10LG27 where ϵ_r varies from ~3 (for 2LG) to ~8 (for 10LG) at $E = 0.1$ V/Å and becomes electric field dependent for $E > 0.01$ V/Å.
A relatively large variation in the measured dielectric constant of monolayer graphene under ambient conditions (Figure 2e) motivates us to study the possible effect of surface reaction on the dielectric response of the FLG. To do so, we oxidized the FLG using a modified Hummer’s method in which the FLG/SiO2/Si substrate was dipped into the diluted oxidant solution (60% H2SO4:0.01 M KMnO4 = 1:1) for up to 5 min, followed by deionized water rinse and an N2 dry. In Figure 2f, our measurements on the FLG under different exposure times reveal a strong dependence of the dielectric constant of monolayer graphene on the surface reaction which makes it an excellent charge screening material upon s oxidation, whereas bilayer graphene and FLG exhibit very high oxidation resistance. We also observed that vacuum thermal annealing of monolayer graphene at 40 °C for 5 h can fully recover its charge storage capability, making it a unique material with a wide range of dielectric response upon oxidation/thermal annealing.

We next perform classical MD simulations using the LAMMPS simulator28 to gain atomistic insight into the electrostatic shear/normal exfoliation mechanisms. Eight circular graphene layers with AB stacking and radius ∼2.5 nm are placed at a distance of 3.0 Å above an amorphous SiO2 substrate while the flattened tip is modeled by a tapered silicon (001) layer, as illustrated in Figure 3a. The 8-LG stack can be printed by displacing the tip upward (to the right) for the normal exfoliation case (shear exfoliation case) with a constant speed. To hold the system in space, 2 Å of the SiO2 substrate normal exfoliation case (shear exfoliation case) with a constant (001) layer, as illustrated in Figure 3a. The 8-LG stack can be placed at a distance of 3.0 Å above an amorphous SiO2 substrate while the flattened tip is modeled by a tapered silicon (001) layer, as illustrated in Figure 3a. The 8-LG stack can be printed by displacing the tip upward (to the right) for the normal exfoliation case (shear exfoliation case) with a constant speed. To hold the system in space, 2 Å of the SiO2 substrate from the bottom was treated as rigid throughout the simulation (see Supporting Information section S3 for full details of the atomistic simulation setup). We use our recently proposed spatial discrete model29 to find the charge distribution within each graphene flake and through the 8-LG thickness and then assign, for the first time, the electric charge of each carbon atom by substituting their position coordinates into the relevant charge density profile (Supporting Information section S4). Figure 3b illustrates the layer-by-layer charge density profiles in the 8-LG system when a total excess charge density of Q = 1013 cm−2 is induced (see Supporting Information and Figure S12 for the corresponding Fermi level profiles). Our spatial discrete model in Figure S14b also suggests that almost 87%, 91%, and 95% of the total excess charge density reside within the two innermost layers of the 8-LG system upon application of Q = 1012 cm−2 (equivalent to a bias voltage of ∼0.46 V), 1013 cm−2 (∼4.6 V), and 5 × 1013 cm−2 (∼23 V), respectively, implying that the gate-induced electric field can be felt very weakly by layers N > 2. This is consistent very well with our CAFM measurements in Figure 2e that the relative dielectric constant (which is a measure of charge storage capability and electric field screening in a material) is almost independent of the electric field and the layer number, in particular, for N > 2.

We next assign the charge of each atom by substituting their radial coordinates into the charge density profile of each layer. In Figure 3c, we provide 3D discrete charge density profile of the innermost flake in the 8-LG system for Q = 1013 cm−2, indicating the charge variations at the zigzag and armchair edges, as previously confirmed by scanning gate microscope measurements and the charge–dipole model30,31 (Figure S17). As the last piece in the puzzle of the electrostatic MD simulations, we calculate the attractive electrostatic force of each atom using the well-established concept of the parallel plate capacitor model, which is already verified by experiments for FLG systems32 and shown to substantially reduce the simulation cost, allowing the detailed study of the problem (see Supporting Information section S5 for full details of the attractive and repulsive force implementations in our MD simulations). After relaxation of the uncharged system at 300 K for 50 ps, we assign the charge of each atom and equilibrate the charged system at 300 K using a Nosé–Hoover thermostat for 10 ps. Then, the attractive electrostatic forces are applied to...
Research Article

ACS Central Science

each atom and the system is again equilibrated for another 10 ps. For the normal (shear) exfoliation process, the tapered silicon (001) layer is pulled in the z direction (x or y direction) with a constant speed of 1×10^{-2} Å/ps (1.5×10^{-2} Å/ps). Newton’s equations of motion are integrated using the velocity Verlet algorithm with a time step of 1 fs. This time step yielded the total energy variation of <0.01% during the whole period of simulations.

In order to provide a quantitative demonstration of the normal and shear electrostatic printing of the FLG, Figure 4a shows the number of printed flakes as a function of the total induced charge density in the 8-LG. As an illustration, snapshots from the MD simulations of the normal exfoliation for $Q = 8.5 \times 10^{12}$ cm$^{-2}$ at $t = 1$ ns and the shear exfoliation for $Q = 9.5 \times 10^{12}$ cm$^{-2}$ at $t = 3$ ns are shown in Figures 4b and 4c, respectively. From Figure 4a, the minimum induced charge density on 8-LG required for the normal and shear exfoliation of 18 nm wide FLG nanoribbons and V_μ for the normal exfoliation of 18 nm wide FLG nanoribbons and V_μ for the shear exfoliation (V_μ) and the shear exfoliation (V_τ) shows the number of printed layers in the shear exfoliation model and their possible interplay can hinder or facilitate the FLG exfoliation process, the interlayer shear strength and out-of-basal-plane tensile strength are highly coupled through vdW interactions between the adjacent graphene flakes. Monitoring of the interlayer spacing ($\Delta d = d_i - d_{i-1}$) and the interlayer rotation ($\Delta \theta = \theta_i - \theta_{i-1}$) of the graphene flakes in our simulations (as an illustration, see Figure 4d for the normal exfoliation of the 8-LG system when $Q = 10.5 \times 10^{12}$ cm$^{-2}$ and the corresponding snapshots of the MD simulation for such a system in Figure 4e) reveals that, as the graphene flakes are continuously being expanded during the normal exfoliation process, their attractive vdw interaction becomes progressively weaker and weaker, leading to the facile twisting and sliding of the graphene flakes. This, coupled with our MD observations that the interlayer rotation θ varies within the range $-2.5^\circ < \theta < 2.5^\circ$ before the exfoliation is initiated, indicates that adjacent graphene flakes with a larger interlayer rotation are more susceptible to sliding relative to one another under even relatively low shear stress levels. Figure 4e clearly shows that the interlayer shear stress, mainly induced by the local delamination of the layers during the normal exfoliation/printing course, leads to a complete separation between layers, labeled 7 and 6, rather than, for instance, between 6 and 5 due to the larger interlayer rotation between 7 and 6, as shown in Figure 4d. Interestingly, our MD results suggest that the normal exfoliation process is always initiated at the edges rather than the middle of the graphene flakes, which can be attributed to the greater electrostatic attractive and repulsive forces caused by the charge accumulation on the edges.

Our analysis of the simulation trajectories further reveals that the shear exfoliation method can effectively suppress the interlayer rotation whose value does not exceed $\pm 0.5^\circ$ before complete exfoliation is achieved. Given that the interlayer potential corrugation (i.e., the interlayer potential energy variation) is a measure of how easily adjacent layers can slide and rotate relative to one another, our MD calculations for a bilayer system show that the potential corrugation increases when the interlayer spacing is reduced by imposing the attractive electrostatic forces (Figure S19). This finding suggests that, compared to the normal exfoliation, a larger potential corrugation and thus a smaller interlayer rotation in the shear exfoliation technique are caused by the absence of...
interlayer spacing variations induced by the upward pulling forces.

CONCLUSIONS

In summary, we reported the first combined theoretical and nanoscale experimental study on the shear and normal exfoliation of ATLM systems, providing fundamental insights into the accurate control of the number of printed layers. Both experimental observations and MD simulations confirmed that the accurate control of the number of printed flakes is not feasible using the normal exfoliation method. We attributed this result to an intrinsic competition between the interlayer shear strength (which is highly influenced by the interlayer twist angle) and the out-of-plane tensile strength (which strongly depends on the interlayer spacing and local delamination) during the normal exfoliation course. Instead, the ability of the shear exfoliation method to eliminate the interlayer spacing variations and simultaneously suppress the interlayer twist angles (due to the larger interlayer potential corrugation) provides much better control over the desired number of the printed flakes, making it superior to the normal exfoliation method. Our electrostatic force measurements on FLG/SiO₂/Si samples suggest a constant relative permittivity nearly independent of the layer number and the external electric field (up to our experimental limit of 0.1 V/Å), which is in sharp contrast with theoretical models. We also demonstrated that the dielectric constant of monolayer graphene can be tuned from 17 to 3.5 upon oxidation and recovered its charge storage capacity by thermal treatment. Notably, bilayer graphene and FLG can retain their chemical inertness under oxidation and thus are well-suited for fabrication of long-term stable electronic devices with higher moisture and oxidation resistance. Our findings about the complex behavior of the vdW interactions between the graphene layers and the way the interlayer shear strength and normal strength change is a general and fundamental result and thus can be used for any other types of exfoliations. While we have specifically focused on the FLG systems, our analyses should be extensible to the electrostatic exfoliation (and mechanical exfoliation as a whole) of other ATLMs, leading to the effective production of 2D materials for the use in high-performance ATLM-based electronic and mechanical devices.

METHODS

Sample Preparation.
A ∼100 nm thick bilayer of poly(methyl methacrylate) (PMMA) 495K (60 nm)/950K (40 nm) is spin coated onto the freshly cleaved surface of 1 mm thick HOPG substrate (SPI-1 grade with a mosaic spread value of 0.4°), and each layer is baked for 10 min at 120 °C to evaporate the solvent and then patterned by electron beam lithography. After development of the exposed PMMA area in 1:3 MIBK/NMP, a 10 nm thick aluminum film is deposited by thermal evaporation, followed by a lift-off step. To thin down the unprotected HOPG area, oxygen plasma etching is carried out in a reactive ion etching system using pure O₂ as the reactive gas. Cylindrical mesas with a radius of 30 nm and etch depth of 75 nm emerge from the HOPG substrate during the plasma etch. After plasma etching, the sample is soaked in 0.1 M KOH water solution for ∼3 min to remove the Al layer, followed by an annealing process at 600 °C under constant Ar/H₂ flow for 1 h to remove any resist/metallic residues from the HOPG substrate (Figure S1). Next, the Pt/Ir₃-coated tip with the normal spring constant of 2.96 N/m (as measured by the thermal noise method) was scanned in contact mode on the SiO₂/Si substrate for 30 min at a load of 2 μN and 70% relative humidity, followed by cleaning the flattened tip via a polishing over ultrasmooth monolayer graphene for 15 min at a load of 200 nN to achieve a residue-free contact surface (Figure S2). Our preliminary SEM observation of the tip at the apex area suggests a very flat triangular shape (Figure S3). Using an approach-retract technique, the flattened tip is coated with a very thin layer of conductive polymer glue by putting the tip apex in gentle contact (at zero normal force) with the prebaked 25 nm thick PEDOT:PSS (s-sorbitol) film on an electrically grounded SiO₂/Si substrate. Applying a negative bias voltage of 5 V to the probe results in the formation of raised features in the film, followed by the mass flow of the locally softened polymer toward the tip apex due to localized Joule heating and strong electric field gradient (Figure S4). The location of each mesa is then determined by switching the operational mode of the AFM to noncontact mode, which allows us to avoid any contact between the glue-coated flattened tip and the mesa surface during the image scanning. Although the tip apex is flat, the noncontact mode can still provide us with desired resolution imaging for the subsequent attachment of the mesa to the tip. Switching the mode of operation back to the contact mode, the glue-coated tip apex is then moved to the center of the selected mesa at an applied normal force of 200 nN, and subsequently the mesa/apex contact area is annealed at 95 °C for 30 min using a thin film heater beneath the HOPG substrate. We then move the tip laterally along a single basal plane of graphite, leading to easy shear of the upper section of the mesa (attached to the tip apex) relative to the lower one (fixed to the HOPG substrate), thanks to the extremely low friction of graphite at an incommensurate contact interface (Figure 1a and Figure S5).

Layer Number Identification.
We performed Raman measurements under ambient conditions to identify the number of layers with monolayer accuracy. To avoid laser-induced heating, the laser power at the sample was set to be below 1 mW. Several Raman spectra of each N-LG sample were collected to ensure the repeatability of the results. In our Raman spectra, we did not observe rotating modes R (~1483–1496 cm⁻¹) and R’ (~1599–1626 cm⁻¹) nor any change in the integrated intensity of the G and 2D bands in the printed bilayer and multilayer graphene, which is indicative of AB stacking (Figure S6).

Finite Element Simulation.
We perform three-dimensional (3D) finite element electrostatic simulations using COMSOL Multiphysics (AC/DC Electrostatics module) to solve the following Poisson equation in a cylindrical space, V. (εᵣEx) = 0, where εᵣ is the relative permittivity of SiO₂, air, or FLG (depending on the subdomain to which the equation is applied); ε₀ is the permittivity of vacuum (ε₀ = 8.854 × 10⁻¹² C² N⁻¹ m⁻²); E = −V is the electric field vector (Ex, Ey, Ez); and V is the electric potential. We also set the following boundary conditions: the electrical potential (e.g., V = 10 V) is defined on the surface of the probe while the bottom surface of the SiO₂ substrate is electrically grounded (V = 0). The Neumann condition (ΔV/Δn = 0) is used on the lateral and upper sides of the simulation box (Figure S7). Then, we calculate the electrostatic attractive force exerted on the tip by the integration of the Maxwell stress tensor over the surface of the probe. In a given subdomain, the Maxwell stress tensor (σ)
can be expressed by \(\sigma = \epsilon \epsilon_0 \left[EE - \frac{1}{2} (E \cdot E) I \right] \), where \(I \) is the identity tensor. We consider a cylindrical simulation box of radius 250 nm and height >300 nm. The probe is modeled as a solid truncated cone of height 250 nm and the half cone angle 15° with a semispherical apex of radius \(R \) positioned in the truncated region (tangent to the cone surface, forming continuity in the geometry) and at a distance \(z \) from the substrate. The FLG film is modeled as a solid cylinder of radius 250 nm, height \(h \), and relative dielectric constant, \(\epsilon_r \), over the 10 nm thick SiO\(_2\) substrate of \(\epsilon_0 = 3.8 \) (which is obtained in the absence of FLG). The air surrounding the probe is modeled as empty space of \(\epsilon_0 = 1 \). We adopt an extrafine tetrahedral mesh for the entire simulation box, except for the tip apex and FLG and SiO\(_2\) thin films where an extremely fine tetrahedral mesh is applied for better numerical accuracy.

Molecular Dynamics Simulations. In order to provide more accurate atomistic models of the electrostatic exfoliation process, we chose graphene from a wide variety of ATLMs in our MD simulations (and thus in our experiments) because there are very well-established empirical potentials to accurately model few-layer graphene (FLG). We adopt reactive empirical bond order (REBO) potential\(^{29}\) to model the intralayer carbon—carbon interactions within the same graphene layer while the free graphene edges are passivated by hydrogen. A registry-dependent (RD) interlayer potential that can accurately describe the overall cohesion, corrugation, equilibrium spacing, and compressibility of FLG is implemented in the LAMMPS code to model the carbon—carbon interaction between graphene flakes.\(^{30}\) For the same MD simulation but different interlayer potentials (LJ or RD potential), both the number and the orientation of printed flakes were completely different, indicating that the potential corrugation (which cannot be described by the LJ potential) plays a crucial role in determining the intrinsic resistance to interlayer sliding and controlling the exfoliation behavior of the FLG under external electrostatic loads (Supporting Information section S3). Tersoff potential and Stillinger—Weber potential are utilized for the modeling of SiO\(_2\) substrate and silicon (001) layer, respectively. Given that the graphene—SiO\(_2\) interaction is physiosisorption in nature, it has been proposed that the short-range vdW interaction is the predominant mechanism at the graphene—SiO\(_2\) interface rather than O—C and Si—C covalent bonds.\(^{31–34}\) As a result, we use a standard 12—6 LJ potential for describing Si—C and O—C interactions according to the Universal Force Field (UFF) model and the Lorentz—Berthelot mixing rules. Although the extreme flexibility of graphene (which makes its interaction with SiO\(_2\) more liquid-like than solid-like) and the surface properties of SiO\(_2\) play a role in the exfoliation of graphene, the Si—C and O—C interaction parameters, used in this paper, alone do not lead to the graphene exfoliation, allowing us to elucidate the key role of electrostatic and interlayer vdW forces in the exfoliation process. The minimum graphene—SiO\(_2\) interfacial adhesion strength required to print monolayer graphene onto the substrate in the absence of electrostatic forces can be obtained for \(\epsilon_{Si-C} = 13.36 \) meV and \(\epsilon_{O-C} = 5.163 \) meV which are 1.5 times greater than the interaction energy values we used in this article (see Figure S9). Nevertheless, we will demonstrate later that the electrostatic force can significantly facilitate the print of the graphene flakes onto the substrate with the weak surface adhesion. The glue between the tip and graphene flakes is simply modeled by applying the LJ potential between the silicon layer and the topmost graphene flake using a larger Si—C interaction energy (i.e., \(\epsilon_{Si-C} = 17.8 \) meV).

Spatial Discrete Model. We now examine the charge distribution of a system with \(N \) layers of graphene using our recently proposed spatial discrete model.\(^{30}\) As shown in Figure 3a, applying a bias voltage \(V \) between the highly doped Si substrate and N-layer graphene (N-LG) induces a total excess charge density of \(Q \) in N-LG, whose layer \(i \) can carry a charge density of \(Q_i \), such that the following constraint holds: \(Q = \sum Q_i \). Based on the method of images, the induced excess charge density in a finite-size N-LG stack with a circular shape of radius \(R \) can be distributed over the \(i \)th layer as \(q_i(x, y, z) = Q_f(x, y) / (f(x, y)) \) where \(f(x, y) = g(x) \) is the charge distribution profile, normalized to its average value (\(\bar{g} \)) for generality purposes; \(r = R / R \) is a dimensionless parameter; \(r \) denotes the radial coordinate of atoms; \(g(x) \) is a polynomial function of \(x \) which only depends on the ratio of the graphene size to the dielectric thickness and is determined by using the method of images, followed by solving the Love equation; and \(\alpha_i (>0) \) is to determine the amount of charge density at the edge of the \(i \)th layer (i.e., \(\tau = 1 \)). The charge distribution in the N-LG/SiO\(_2\)/Si system tends to minimize the total energy \(U \), which is given as the sum of energy stored in SiO\(_2\) as the dielectric medium (\(U_d \)), electrostatic energy between the graphene layers (\(U_{el} \)), and the band-filling energy in each layer (\(U_{fill} \)). The first two terms can be given by \(U_d = Q_d h_d / 2 \epsilon_{SiO2} \) and \(U_{el} = \left(d_i / 2 \epsilon_{SiO2} \right) \sum N (Q - Q_i)^2 \), where \(h_d \) and \(\epsilon_d \) are the thickness and dielectric constant of the SiO\(_2\) substrate, respectively, \(d_i \) is the interlayer distance, and \(\epsilon_i \) is the dielectric constant in N-LG. Assuming that the electronic band structures \(E \) remain unchanged under an external electric field, \(U_b = (1/N) \sum N \int_0^{\left(E_{Fi} \right)} E D \left(E \right) dE \), where \(D \) is the density of states (DOS) and \(\left(E_{Fi} \right) \) is the average value of the Fermi energy profile \(E_{Fi} \) across the layer \(i \) in terms of the constant Fermi energy \(e_{Fi} \). In N-LG systems, \(e_{Fi} \) is obtained from the summation of DOS for each energy band with double spin and double valley degeneracies as \(2 \sum_{N_i} \sum_{N} \left[E \pm \gamma_i \sin(j\pi/2(N + 1)) / (\sqrt{N}) \right] \), where \(\gamma_0 = (N/2) \) is the number of bands in \(E \), \(j = 2l + 1 \) for even multilayers, \(h \) is the reduced Planck constant, \(\gamma_i = (3 \sqrt{3} / 2) h \) is the Fermi velocity, \(\gamma_0 \) is the nearest neighbor hopping parameter, \(\gamma_1 \) is the nearest neighbor interlayer coupling constant, and \(a = 1.42 \) is the C—C bond length. Finally, the average charge density of each layer which can be given by \(Q_i = (e/N) \int_0^{\left(E_{Fi} \right)} D \left(E \right) dE \) is obtained by minimizing the total energy of the system with respect to \(e_{Fi} \) and \(\alpha_i \) as the variational parameters under the constraint that \(Q = \sum Q_i \). For our numerical calculations, we take \(\gamma_0 = 3.14 \) eV and \(\gamma_1 = 0.4 \) eV as typical values of bulk graphite and use the average measured value of \(\epsilon_{SiO2} = 20 \) for the N-LG system.

We next assign the charge of each atom by substituting their radial coordinates into the charge density profile of each layer. To do so, the point charge on atom \(j \) belonging to the flake \(i \) can be determined by multiplying the corresponding charge density \(q_{ij} \) to the triangular area \(A_i = 3\sqrt{3}a^2/4 \) surrounding the associated atom, and can be given by \(q_{ij} = Q_f(x_i, y_i) / (f(x_i, y_i)) \) where
the University of Michigan Rackham Predoctoral Fellowship. We also acknowledge support from Michigan Center for Materials Characterization (MC²) and Lurie Nanofabrication Facility (LNF) at the University of Michigan. We also thank Saeedeh Noroozi from Molecular & Behavioral Neuroscience Institute (MBNI) at the University of Michigan for her assistance with MD simulations.

REFERENCES

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomec.7b00590.

Experimental setup, finite element simulations, atomistic simulations, charge distribution in FLG, charge and corresponding electrostatic force on each atom, and configuration-dependent interlayer mechanical properties of FLG (PDF).

AUTHOR INFORMATION

Corresponding Author

*E-mail: weili@umich.edu (W. L.).

ORCID

Wei Li: 0000-0002-4851-1032

Author Contributions

H.R. and W.L. designed the study. H.R. did the experiments, carried out all finite element and MD simulations, and analyzed the data. H.R. and W.L. contributed in the discussion and interpretation of the results. H.R. wrote the manuscript with input from W.L.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation under Grant No. CMMI-1636132 and in part by the National Science Foundation under Grant No. CMMI-1636132 and in part by...

