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Symmetry breaking in self-assembled monolayers on solid surfaces.
Il. Anisotropic substrate elasticity
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On a solid surface a monolayer mixture may separate into two phases. The phases can self-assemble into a
variety of patterns, with the feature size on the scale of 1-100 nm. This paper studies how the elastic
anisotropy of the substrate affects the patterns. The substrate is taken to be of cubic crystal symmetry, although
the method developed can be readily extended to treat substrates of any other crystalline symmetry. The surface
stress differs from one phase to the other, and the difference refines the phases to reduce the elastic energy. The
phase boundary energy tends to coarsen the phases. The two competing effects set the phase sizes and the
phase patterns. The anisotropy of the substrate elasticity breaks the symmetry of the system. We formulate a
phase field model on the basis of this physical picture. The numerical simulation shows that stripes tend to
orient along the two compliant directions of the substrate, forming a tweedlike pattern. A square lattice of dots
can also be obtained when the anisotropy is weak and the average concentration sufficiently deviates from half
filling. We interpret these findings in terms of free energy minimization.
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[. INTRODUCTION ing the interplay among several kinds of anisotropy to future
studies. Section Il recalls our model for surface patterns.
Experiments have shown for a decade that a monolayesection Ill solves the elastic field in the substrate by using
mixture on a solid surface may self-assemble into nanoscalée Fourier Transform. Numerical results and discussions are
phase patterns. Examples include alternating oxygen an@resented in Sec. IV.
bare copper stripes on the @0 surface' triangular super-
lattice of S-rich dots in a continuous Ag matrix on the Il. THE CONTINUOUS PHASE FIELD MODEL
Ru(0007) surfac€ regular arrays of square islands of N on
the CU001) surface® and serpentine stripes and triangular ~ This section outlines the salient features of the model.
lattice of dots of Pb islands on the @d1) surface’ As Refer to our previous papér%for further details. Consider
discussed in Refs. 5-11, the surface stress varies from orf® epilayer composed of two atomic speckesindB on a
phase to the other. The phases tend to refine to reduce tg&bstrate of atomic speci€&s A andB can be both different
elastic energy, and coarsen to reduce the phase bounddF@m S such as the sulfur-silver mixture on the ruthenium

energy. The two competing effects set the equilibrium phas% bstrati._fr\lternta;uvely,thorlly f(;ﬂe at(l;mtm tspemers] of E{?}e ep-
sizes and the phase patterns, ilayer is different from that of the substrate, such as the oxy-

Unlike the better studied monolayer molecules on an airJen atoms on the copper substrae model the epilayer as

liquid interface(i.e., the Langmuir film), the monolayer on a an infinite surface and allow the two speciasand B to
qu S 9 A y diffuse within the epilayer. We model the substrate as a semi-
solid surface is usually anisotropic within the plane of the

. : . _infinit lastic body, ing the half <0
layer. The anisotropy breaks the orientational symmetry, g|vgloll:]rl1§ edet?ys tlﬁeqi)xz pl(;(r:](;u[lgﬁlg_]gl(a)]_e all space

ing rise to diverse phase patterns. At this point, the experi- We define the concentratiof by the fraction of the

mental information available to us on the effects of anisot-4iymic sites on the surface occupied by speBieghe con-

ropy is scanty. This series of papers explore theoreticatentrationC(x,,x,,t) is a field on the planex( ,x,), evolv-
possibilities within a phase field model that we have devel1ng with time t as atoms diffuse within the epilayer. Atoms

oped recently~** . o diffuse to reduce the free energy. Within the continuous
A monOIayer-SUbStrate system can be anisotropic in termﬁhase field model, the diffusion equation is

of the surface stress, the elastic constants of the substrate,
and the phase boundary energy. In a previous pdpeg

have investigated the effect of surface stress anisotropy. This § - M V2 ‘9_9_
paper, the sequel, focuses on the effect of the anisotropy of gt A? aC
substrate elasticity. We assume that the substrate is of cubic

crystalline symmetry, and the substrate surface coincideghereM is the mobility of atoms in the epilayer andis the
with the (001) crystal plane. As will become evident, the number of atoms per unit area on the surface. The three
method to be developed can be readily extended to treat sukerms in the bracket in Eq1) come from different energetic
strates of any other crystalline symmetry. In this series oforces that drive diffusion. The first two terms in Ed),
papers, we will allow one kind of anisotropy at a time, leav-which are analogous to those in Ref. 12, come from the free

2hoV2C+ de oy |, (1)
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X3 constantscy;, Cq1», andc,,. The surface of the substrate
4 coincides with thg00l) crystal plane, andx;,X,,X3) coin-
cides with the cube edges of the crystal unit cell. The solu-
tion of this boundary value problem is given in Sec. Ill.
When the concentration field is know at a given time, one
can compute the driving forces on the right-hand side of Eq.
(1) as described above. Equati¢h) then updates the con-
centration for a time step. The procedure is repeated to
evolve the concentration field for any finite time. Before de-
scribing the numerical method, we first introduce a scheme
to normalize the evolution equation. A comparison of the
first two terms in the parenthesis in Ed) defines the length

hO 1/2
Y ’

In the Cahn-Hilliard modet? this length scales the distance
over which the concentration changes from the level of one
phase to that of the other, and represents the thickness of the
phase boundary.

The other length scale, which reflects the competition be-
tween coarsening and refining, is defined by

_ Cyhg
=7
This length is obtained by comparing the second and the
(b) third terms in the parenthesis in Ed.). The feature size of
) . . the equilibrium phase pattern is on the ordetl4 The ratio
FIG. 1.,(a)_ IIIu_stratlon of Fhe cqordlnates(.b) Cut a cylinder of the two lengths defines a dimensionless paraméer
a_LIong thex; direction. The cylllndgr |s_constra|ned so that deforma-:b/l_ This parameter will appear in the normalized equa-
tion can only occur along the; direction. tion. The orders of magnitudes @f and| have been esti-

energy of mixing and the phase boundary energy. The thir{i,na?ltjz(l In Ref. 9, which broadly agree with the experimental

term is due to the concentration-dependent surface stress. From Eq. (1), disregarding a dimensionless factor, we

We model the monolayer mixture as a binary regular soy, o that the diffusivity scales @&~MkgT/A. To resolve
lution. The free energy of mixing(C) takes the form

events occurring over the length scalebpthe time scale is
r=b?/D, namely,

©)

g(C)=AkgT[CInC+(1-C)In(1-C)+QC(1-C)],

2 ho
. ) . = . (6)
wherekg is Boltzmann’s constant antlis the absolute tem- 7 M (kgT)?
perature. The dimensionless numk@r measures the en- . _
thalpy of mixing in units of the thermal enerdyT. The We solve the evolution equatiofd) by the spectral
term hoV2C represents the effect of phase boundary energynethod. This method considerably saves computation time
whereh, is a positive constant. and has been applied to many other problems; see Ref. 13.

We assume that the surface stress is a linear function dfhe elastic field in the half space can be solved analytically
the concentration, and denote the slopedbyin this paper, by using the Fourier transform. We denote the two-
the surface stress is taken to be isotropic, so¢hiata scalar. ~ dimensional2D) Fourier transform of a functioRi(x; ,xz,t)

&4 IS the elastic strain in the surface. A Greek subscript rundy F(ky,k,,t), wherek,; andk, are the coordinates in the
from 1 to 2. A repeated index implies summation. When thereciprocal space. For example, the Fourier transform of the
concentration field is nonuniform in the epilayer, the surfaceconcentration field is

stress is also nonuniform. The nonuniformity generates a

stress fieldo;; in the substrate, which is determined by an - [ Zi(kyxq +koX

elasticity boandary value problem. At the surfage=0, the Clky ko, )= f_xf_xC(xl,xz,t)e (rarieadxdx,.
tractions relate to the concentration as (7)

031= (ﬁ&C/&Xl, O032= ¢&C/8X2, 033= 0. (3) Let k= \/k1+ k2, n1=k1/k, and n2:k2/k. NormaliZing
Eqg. (1) by the lengthb and the timer, and applying the
The bulk of the substrate is assumed to have cubic crys-ourier transform on both sides of the equation, we obtain
talline symmetry, with three independent elastic stiffnesshe evolution equation in the reciprocal space
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ﬂé N N R)\z—(Sr‘ﬁ-i—Rng) — NN, inl)\ v
—=—k?P—(2k*-Qsk)C. 8 , !
ot ( Qsk) ® —n;n, RAN2—(Sme+Rnf)  in,n || v
) : : 2_ v
Here s= — 48,4,/ #kC is a dimensionless function of the Ingh InzA SM-R °
elastic constants; and n,. The expression o§ is deter- 0
mined in the next sectiorP(k; ,k,,t) is the Fourier trans- =|0]|. (13)
form of 0
P(Xq,%Xp,1)= In( +Q(1-20). (9) This is an algeb_raic eigenvalue problemb_ei_ng the eigen—
1-C value andv the eigenvector. To have nontrivial solutions, the

. . . . . determinant of the matrix in Eq13) should vanish, leadin
Details about the numerical simulation can be found in Refs ! i in Eq13) should vanis N9

9, 11, 13. o
NS+ dA4+dun2+dy=0, (14)
Ill. THE ELASTIC FIELD IN A SUBSTRATE
WITH CUBIC SYMMETRY where
Substrates of cubic crystalline symmetry, such as silicon,
silver, gold, and copper, are commonly used in surface stud- R2+RS+S%—1
ies. It is worthwhile to document the elastic field in such a dy=-— RS ’
substrate induced by the nonuniform surface stressu;Lie¢
the displacements in the substrate. A Latin subscript runs ) 5
from 1 to 3. In terms of the displacements, the force balance _ R™+RS+S° -1
equation i$* 2 RS
— 2_
C11U1 11 C12(Uz 21 Uz 31) + Caa(Us 20 Uz 10) + S-2RS+ (RR283)S+ 2A+R) nn2, (15
+Caa(Uy 33t U319 =0,
R?—2RS+S°—1
Caa(Ug 21+ Uz 11) + C13Uz 22+ C1p(Ug 12 U3 30) dy=— =S nin3—1.
+Cay(Up33t U3 29 =0, (10
Equation (14) is a cubic algebraic equation &f, and
Caa(Ug,31+ U 11) + Cag(Uz 32t Uz 20 + C11Uz 33 analytical expressions for the roots can be found in standard
+ " =0 mathematical handbooks. The displacements should vanish
C1x(Ug,131T Uz 29 =0.

as x3— —oo, Consequently, we choose the three roots that
These are three partial differential equations for the displacehave positive real part and denote themMay \,, and\g.

ment fieldu;(x;,X,,X3) in the substrate. Substituting these eigenvalues back into B@), we obtain
Taking the 2D Fourier transform on both sides of Eq.the corresponding three eigenvecta’d), 2, and »®.
(10), we obtain Each eigenvector is determined up to a scalar. The displace-

ment is a linear combination
RU;— (SK+ RIG) 0, — Ky Ky, + ik, 05=0,

N SR 82 2) nok 83 (3)ngk
—kkoly+ RU— (SR+RI) 0o +ik,05=0,  (11) 0= - peho —=piPehdtat —=ySlehdds, - (16)

ik 07 +iky05+ SUS’—R(kiJr k§)03=0, wherea;, a,, andas are arbitrary constants. The solution
(16) satisfies the differential equations in EGl). To deter-
whereR=cCy4/(C1p+ Csg) @ndS=C11/(Cyo+Cys). The COOT-  minea,, a,, andas, we must invoke the boundary condi-
dinatesx; andx, are transformed to the reciprocal spdge tjons.
andk,, butx; remains untransformed. The prime notation  For the particular problem of this paper, the tractions on

means the differentiation with respectxg. _ _ the surfacex;=0 are given by Eq(3). Taking the 2D Fou-
Equation(11) contains a set of linear ordinary differential rier transform, we obtain

equations for the functions;(x3). The solution takes the
form - . PN . P
031=1K1¢C, 03=ik¢C, 033=0. 17
0= perks, (12) _ ,
To keep the problem general for the time beinggatet, 030,
The constant vectoy and the constant scalar are to be andos; be the arbitrary tractions on the surface. The bound-
determined. Substituting E¢12) into Eq.(11), we obtain ary conditions ak;=0 are given by
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FIG. 2. An evolution sequence on a Cu substrate. The average FIG. 3. An evolution sequence on a Cu substrate. The average
concentration is 0.5. concentration is 0.4.

031=Caq(U3 1+ U1 3), 031=Cyy(ik 03+ 07),

032= CadUs 2t Uz 3, (18 G 32= Caiko05+05), (19
033=C11U3z 3+ C1p(Ug 1+ Uz o).

) ) ] 6'33:C110é+ Clz(ik101+ik202).
Taking the 2D Fourier transform on the both sides of Eq.

(18), we obtain Substituting Eq(16) into Eq. (19), we obtain
|
Cad Ny +ingwg) Cas NP +inyv?) Cas(Agrt® +iny i) a;
Cas N +innH) Cas AoV +in ) Cas(Ngvs” +in v a,

Clz(inlv(ll)-l—inzv(zl))+011)\lv(31) Clz(inlyg_z)‘l‘inzv(zz))‘l‘cll)\ngz) Clz(inlv(13)+in21/<23))+C11)\3vf33) a3

6'31
=| 03|, (20)
6'33
|
Oncea,, a,, andag are solved from Eq20), the displace- As mentioned before, the discrete FFT is used in the nu-
ments are given by Ed16). The strain field in the surface merical simulation. The eigenvalue problem and the value of
£,, 1S given by s at each grid point only need to be computed once, because

. o they only depend on the elastic constants and the position of
Eaa=1Kala- (22) the grid points in the reciprocal space. Once computed and
This expression then allows us to calculatevhich in turn  stored, the values &fat grid points are used in evolving the

enters the evolution equatidB). concentration field at all time. Consequently, the computa-
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FIG. 4. An evolution sequence on a Mo substrate. The average FIG. 5. An evolution sequence on a Mo substrate. The average

concentration is 0.5. concentration is 0.4.

tional effort to evolve the concentration field on an aniso- _ Cpt 2Cy4 1 29
tropic substrate is nearly the same as that on an isotropic {= Cyy o (22)
substrate.

When the crystal is isotropi@;=0. When it is anisotropic,
the crystal falls into one of two classes<0 or {>0. Note

IV. NUMERICAL SIMULATIONS AND DISCUSSIONS that {=0.62 for Cu, and,=—0.14 for Mo. The physical
In all the simulations reported below, the calculation cellSignificance of this classification is as follows.
size is 256X 2560, 0 =2.2, andQ= 1. Two crystalline sub- The coordinatesxy,X,,X3) coincide with the three edges

strates Cu and Mo are used, whose elastic constants afé the cubic crystalline cell, as shown in Figial The co-
found in standard textbooks. Figure 2 shows a simulate@rdinates ; ,x;,xz) relate to &;,X;,x3) by a rotatione
evolution sequence on a @M01) surface. The concentration about thex; axis. We cut a cylinder from the substrate along
has an average 0.5. The initial concentration fluctuates rarihe x; direction, as shown in Fig. (). We constrain the
domly within 0.001 from the average. It is found that stripescylinder to deform only in the; direction. We denote the
form and line up along the two directiolis,0) and(0,1). The  stress and strain along this direction éwande, respectively.
directional preference of the patterns becomes observable @he stress-strain relation along tké direction is
a very early stage, say at 1. Figure 3 shows another se-
quence with the average concentration 0.4. o=c(a)s, (23
Figure 4 shows an evolution sequence on a Mo substratg,ere
The average concentration is 0.5. The stripes line up along
the two directions(1,1) and (—1,1). Figure 5 shows a se- c(a) _
quence with average concentration 0.4. In contrast to Cu, a =1+ E(smz 2a. (24)
square lattice of dots is obtained for Mo.
The numerical simulations have shown several patterns dsquation(24) shows that for an anisotropic elastic body, the
above. Consider the stripes at average concentration 0.5tiffness measured in a uniaxial strain experiment depends on
Why do they have different orientations on the substrates othe orientation.
Cu and Mo? How do the orientations relate to the elastic For the special case of elastic isotrogy: 0, and Eq.(24)
properties of the substrate? gives c(a)=cq;, independent of the orientation. Figure 6
It is well known that the anisotropy of a cubic crystal can shows the stiffness versus orientation curve for Cu in the
be characterized by a single dimensionless parameter polar coordinate. The distance from a point on the curve to
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FIG. 6. The stiffness versus orientation curve for Cu in a polar  FIG. 7. The stiffness versus orientation curve for Mo in a polar
coordinate.l=0.62. coordinate.=—0.14.

the origin represents the magnitude of stiffness in the direche distinguished into the following cases.

tion. A Cu substrate has two compliant directidds0) and (i) When{=0, the substrate is isotropic. All orientations are
(0,1) along which the stiffness minimizes. Figure 7 showsenergy equivalent, as expected.

the curve for Mo. The two compliant directions dfgl) and (i) When¢>0, R minimizes ata=0 anda=90°. Two en-
(1,1. It is evident from Eq(24) that when{>0, the com-  ergy equivalent variants exist.

pliant directions ar¢1,0) and(0,1) and when; <0, the com-  (jii) When ¢<0, R minimizes ata=45° anda=135°. Two
pliant directions are1,1) and(—1,1). energy equivalent variants exist.

Our simulations show that the stripes tend to orient along \We observe the coexistence of two variants in the numeri-
the compliant directions. This trend can be understood qualical simulations shown in Figs. 2 and 4. The two variants
tatively. For a fixed stress, the elastic energy density is proform small tweedlike units. The numerical simulation shows
portional to the elastic compliance. When the stripes orienthat such a configuration is very stable. Although the tweed-
along the compliant directions, the system can relax morgike stripes increase the phase boundary energy compared
elastic energy. with a set of parallel stripes, it seems that such a configura-

Next let us look into the problem in more detail. The tion reduces more elastic energy. This possibility is being
question is, assuming that an arbitrary concentration stripe igvestigated?

formed on the substrate, what will the orientatiarof the At average concentration 0.4, when the substrate is isotro-
stripe that minimizes the free energy be? The energy per unfic ({=0), our previous simulation shows that the phases
area of the systerg,,eis expressed by form a lattice of triangular lattice of dofs.For Cu (

=0.62), the phases form a tweedlike struct(iig. 3), prob-
9(C)+heC ,C ,— }03 u, |dA, (25 ably because the anisotropy is strong. For Me=(—0.14),
A the phases form a square lattice of d(fgy. 5); the anisot-

. . . ropy apparently is weak enough to allow the dots to form
whereA is the area of the surface ang the displacement in instead of the tweeds, but strong enough to form a square

the ep|_|ayer. In this paper we ha\_/e assumed t_hat the first Whittice rather than a triangular lattice. Furthermore, on an
terms in the bracket are |sotrp piC. A cal'culat.|on shows thafsotropic substrate, the symmetry makes the triangular lattice
for any concentration modulation in tixg direction, the free in any orientation energy equivalent, leading to a polydo-
energy takes the form main structuré.By contrast, on a cubic substrate, the broken
Jave= Jo+ RQ 26) symmetry results_ in dots in thél,1) orientati_on(Fi_g. 5).

ave 50 1 However, the cubic crystal only breaks the orientational sym-
whereg, andg; (g;>0) are independent of the orientation metry, but not the transnational symmetry: dislocations and
@, andR depends onx in a special way. Similar ta(«) in  other imperfections are evident in Fig. 5.
Eq. (24), Ris an analytical function of, whereé&=sir? 2a.

1
gave:K ,fA

The preferred orientation is obtained by minimizigg,., or V. CONCLUDING REMARKS
R. Note that ] ) ) )
The formation of stable concentration pattern in an epi-
drR dR taxial monolayer requires three ingredients: phase separation,
£=2d—55in 4o (27) phase coarsening, and phase refining. These ingredients re-

sult in a nonlinear diffusion equation, with which we simu-
We find R reaches extrema at=0, 45°, 90°, and 135°. Our lated the entire process of pattern evolution. This paper fo-
numerical simulatiofincluding those not reported herean  cuses on the effect of substrate elasticity anisotropy on the
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pattern formation process. The simulation reveals that théoundary can all be anisotropic. One can imagine diverse
anisotropy of substrate elasticity breaks the symmetry of th@atterns generated by the interplay of broken symmetries of
system, and tweedlike stripes form along the compliant didifferent kinds. At this point, it begins to be possible to sort

rection. A square lattice of dots may also be obtained. Crysout possible patterns within our model. However, the experi-
talline anisotropy only partially breaks the orientational sym-mental information available to us is so incomplete for any

metry. Orientational variantfe.g., the tweedsare still  gjven system that a meaningful comparison with the model is
permitted. The square lattice of dots, when formed, are prongnpossible. It is hoped that systematic experiments will soon

to transnational impel’fections such as dislocations. To forng;ucceed in bringing out phenomena Speciﬁc to mono'ayer
more ordered structure over a large area, further symmetryixtures on solid surfaces.

breaking operations are necessary, such as using the lithog-
raphy to define a coarsen patterns on the surface to guide the
self-assembly®® The method developed in this paper can
be readily extended to treat substrates with other symmetries,
such as th€011) surface of a cubic crystal. For most experi-  This work was supported by the U.S. Department of En-
mental systems, substrate elasticity, surface stress, and phasgy through Contract No. DE-FG02-99ER45787.
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