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Symmetry breaking in self-assembled monolayers on solid surfaces.
II. Anisotropic substrate elasticity
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On a solid surface a monolayer mixture may separate into two phases. The phases can self-assemble into a
variety of patterns, with the feature size on the scale of 1–100 nm. This paper studies how the elastic
anisotropy of the substrate affects the patterns. The substrate is taken to be of cubic crystal symmetry, although
the method developed can be readily extended to treat substrates of any other crystalline symmetry. The surface
stress differs from one phase to the other, and the difference refines the phases to reduce the elastic energy. The
phase boundary energy tends to coarsen the phases. The two competing effects set the phase sizes and the
phase patterns. The anisotropy of the substrate elasticity breaks the symmetry of the system. We formulate a
phase field model on the basis of this physical picture. The numerical simulation shows that stripes tend to
orient along the two compliant directions of the substrate, forming a tweedlike pattern. A square lattice of dots
can also be obtained when the anisotropy is weak and the average concentration sufficiently deviates from half
filling. We interpret these findings in terms of free energy minimization.
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I. INTRODUCTION

Experiments have shown for a decade that a monola
mixture on a solid surface may self-assemble into nanos
phase patterns. Examples include alternating oxygen
bare copper stripes on the Cu~110! surface,1 triangular super-
lattice of S-rich dots in a continuous Ag matrix on th
Ru~0001! surface,2 regular arrays of square islands of N o
the Cu~001! surface,3 and serpentine stripes and triangu
lattice of dots of Pb islands on the Cu~111! surface.4 As
discussed in Refs. 5–11, the surface stress varies from
phase to the other. The phases tend to refine to reduce
elastic energy, and coarsen to reduce the phase boun
energy. The two competing effects set the equilibrium ph
sizes and the phase patterns.

Unlike the better studied monolayer molecules on an
liquid interface~i.e., the Langmuir film!, the monolayer on a
solid surface is usually anisotropic within the plane of t
layer. The anisotropy breaks the orientational symmetry, g
ing rise to diverse phase patterns. At this point, the exp
mental information available to us on the effects of anis
ropy is scanty. This series of papers explore theoret
possibilities within a phase field model that we have dev
oped recently.7–11

A monolayer-substrate system can be anisotropic in te
of the surface stress, the elastic constants of the subs
and the phase boundary energy. In a previous paper,11 we
have investigated the effect of surface stress anisotropy.
paper, the sequel, focuses on the effect of the anisotrop
substrate elasticity. We assume that the substrate is of c
crystalline symmetry, and the substrate surface coinc
with the ~001! crystal plane. As will become evident, th
method to be developed can be readily extended to treat
strates of any other crystalline symmetry. In this series
papers, we will allow one kind of anisotropy at a time, lea
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ing the interplay among several kinds of anisotropy to futu
studies. Section II recalls our model for surface patter
Section III solves the elastic field in the substrate by us
the Fourier Transform. Numerical results and discussions
presented in Sec. IV.

II. THE CONTINUOUS PHASE FIELD MODEL

This section outlines the salient features of the mod
Refer to our previous papers7,9 for further details. Consider
an epilayer composed of two atomic speciesA and B on a
substrate of atomic speciesS. A andB can be both different
from S, such as the sulfur-silver mixture on the rutheniu
substrate.2 Alternatively, only one atomic species of the e
ilayer is different from that of the substrate, such as the o
gen atoms on the copper substrate.1 We model the epilayer as
an infinite surface and allow the two speciesA and B to
diffuse within the epilayer. We model the substrate as a se
infinite elastic body, occupying the half spacex3,0
bounded by thex12x2 plane@Fig. 1~a!#.

We define the concentrationC by the fraction of the
atomic sites on the surface occupied by speciesB. The con-
centrationC(x1 ,x2 ,t) is a field on the plane (x1 ,x2), evolv-
ing with time t as atoms diffuse within the epilayer. Atom
diffuse to reduce the free energy. Within the continuo
phase field model, the diffusion equation is

]C

]t
5

M

L2 ¹2S ]g

]C
22h0¹2C1f«aaD , ~1!

whereM is the mobility of atoms in the epilayer andL is the
number of atoms per unit area on the surface. The th
terms in the bracket in Eq.~1! come from different energetic
forces that drive diffusion. The first two terms in Eq.~1!,
which are analogous to those in Ref. 12, come from the f
©2002 The American Physical Society18-1
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energy of mixing and the phase boundary energy. The t
term is due to the concentration-dependent surface stres

We model the monolayer mixture as a binary regular
lution. The free energy of mixingg(C) takes the form

g~C!5LkBT@C ln C1~12C!ln~12C!1VC~12C!#,
~2!

wherekB is Boltzmann’s constant andT is the absolute tem
perature. The dimensionless numberV measures the en
thalpy of mixing in units of the thermal energykBT. The
term h0¹2C represents the effect of phase boundary ene
whereh0 is a positive constant.

We assume that the surface stress is a linear functio
the concentration, and denote the slope byf. In this paper,
the surface stress is taken to be isotropic, so thatf is a scalar.
«ab is the elastic strain in the surface. A Greek subscript r
from 1 to 2. A repeated index implies summation. When
concentration field is nonuniform in the epilayer, the surfa
stress is also nonuniform. The nonuniformity generate
stress fields i j in the substrate, which is determined by
elasticity boundary value problem. At the surfacex350, the
tractions relate to the concentration as

s315f]C/]x1 , s325f]C/]x2 , s3350. ~3!

The bulk of the substrate is assumed to have cubic c
talline symmetry, with three independent elastic stiffne

FIG. 1. ~a! Illustration of the coordinates.~b! Cut a cylinder
along thex18 direction. The cylinder is constrained so that deform
tion can only occur along thex18 direction.
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constantsc11, c12, and c44. The surface of the substrat
coincides with the~001! crystal plane, and (x1 ,x2 ,x3) coin-
cides with the cube edges of the crystal unit cell. The so
tion of this boundary value problem is given in Sec. III.

When the concentration field is know at a given time, o
can compute the driving forces on the right-hand side of
~1! as described above. Equation~1! then updates the con
centration for a time step. The procedure is repeated
evolve the concentration field for any finite time. Before d
scribing the numerical method, we first introduce a sche
to normalize the evolution equation. A comparison of t
first two terms in the parenthesis in Eq.~1! defines the length

b5S h0

LkBTD 1/2

. ~4!

In the Cahn-Hilliard model,12 this length scales the distanc
over which the concentration changes from the level of o
phase to that of the other, and represents the thickness o
phase boundary.

The other length scale, which reflects the competition
tween coarsening and refining, is defined by

l 5
c11h0

f2 . ~5!

This length is obtained by comparing the second and
third terms in the parenthesis in Eq.~1!. The feature size of
the equilibrium phase pattern is on the order 4p l . The ratio
of the two lengths defines a dimensionless parameteQ
5b/ l . This parameter will appear in the normalized equ
tion. The orders of magnitudes ofb and l have been esti-
mated in Ref. 9, which broadly agree with the experimen
values.

From Eq. ~1!, disregarding a dimensionless factor, w
note that the diffusivity scales asD;MkBT/L. To resolve
events occurring over the length scale ofb, the time scale is
t5b2/D, namely,

t5
h0

M ~kBT!2 . ~6!

We solve the evolution equation~1! by the spectral
method. This method considerably saves computation t
and has been applied to many other problems; see Ref
The elastic field in the half space can be solved analytic
by using the Fourier transform. We denote the tw
dimensional~2D! Fourier transform of a functionF(x1 ,x2 ,t)
by F̂(k1 ,k2 ,t), wherek1 and k2 are the coordinates in th
reciprocal space. For example, the Fourier transform of
concentration field is

Ĉ~k1 ,k2 ,t !5E
2`

` E
2`

`

C~x1 ,x2 ,t !e2 i ~k1x11k2x2!dx1dx2 .

~7!

Let k5Ak1
21k2

2, n15k1 /k, andn25k2 /k. Normalizing
Eq. ~1! by the lengthb and the timet, and applying the
Fourier transform on both sides of the equation, we obt
the evolution equation in the reciprocal space

-

8-2
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]Ĉ

]t
52k2P̂2~2k42Qsk3!Ĉ. ~8!

Here s52c11«̂aa /fkĈ is a dimensionless function of th
elastic constantsn1 and n2 . The expression ofs is deter-
mined in the next section.P̂(k1 ,k2 ,t) is the Fourier trans-
form of

P~x1 ,x2 ,t !5 lnS C

12CD1V~122C!. ~9!

Details about the numerical simulation can be found in Re
9, 11, 13.

III. THE ELASTIC FIELD IN A SUBSTRATE
WITH CUBIC SYMMETRY

Substrates of cubic crystalline symmetry, such as silic
silver, gold, and copper, are commonly used in surface s
ies. It is worthwhile to document the elastic field in such
substrate induced by the nonuniform surface stress. Letui be
the displacements in the substrate. A Latin subscript r
from 1 to 3. In terms of the displacements, the force bala
equation is14

c11u1,111c12~u2,211u3,31!1c44~u1,221u2,12!

1c44~u1,331u3,13!50,

c44~u1,211u2,11!1c11u2,221c12~u1,121u3,32!

1c44~u2,331u3,23!50, ~10!

c44~u1,311u3,11!1c44~u2,321u3,22!1c11u3,33

1c12~u1,131u2,23!50.

These are three partial differential equations for the displa
ment fieldui(x1 ,x2 ,x3) in the substrate.

Taking the 2D Fourier transform on both sides of E
~10!, we obtain

Rû192~Sk1
21Rk2

2!û12k1k2û21 ik1û3850,

2k1k2û11Rû292~Sk2
21Rk1

2!û21 ik2û3850, ~11!

ik1û181 ik2û281Sû392R~k1
21k2

2!û350,

whereR5c44/(c121c44) and S5c11/(c121c44). The coor-
dinatesx1 andx2 are transformed to the reciprocal spacek1
and k2 , but x3 remains untransformed. The prime notati
means the differentiation with respect tox3 .

Equation~11! contains a set of linear ordinary differenti
equations for the functionsui(x3). The solution takes the
form

û5nelkx3. ~12!

The constant vectorn and the constant scalarl are to be
determined. Substituting Eq.~12! into Eq. ~11!, we obtain
20541
s.

,
d-
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F Rl22~Sn1
21Rn2

2! 2n1n2 in1l

2n1n2 Rl22~Sn2
21Rn1

2! in2l

in1l in2l Sl22R
G F n1

n2

n3

G
5F 0

0
0
G . ~13!

This is an algebraic eigenvalue problem,l being the eigen-
value andn the eigenvector. To have nontrivial solutions, t
determinant of the matrix in Eq.~13! should vanish, leading
to

l61d1l41d2l21d350, ~14!

where

d152
R21RS1S221

RS
,

d25
R21RS1S221

RS

1
S322RS21~R223!S12~11R!

R2S
n1

2n2
2, ~15!

d352
R222RS1S221

RS
n1

2n2
221.

Equation ~14! is a cubic algebraic equation ofl2, and
analytical expressions for the roots can be found in stand
mathematical handbooks. The displacements should va
as x3→2`. Consequently, we choose the three roots t
have positive real part and denote them byl1 , l2 , andl3 .
Substituting these eigenvalues back into Eq.~13!, we obtain
the corresponding three eigenvectorsn(1), n(2), and n(3).
Each eigenvector is determined up to a scalar. The displ
ment is a linear combination

û5
a1

k
n~1!el1kx31

a2

k
n~2!el2kx31

a3

k
n~3!el3kx3, ~16!

wherea1 , a2 , anda3 are arbitrary constants. The solutio
~16! satisfies the differential equations in Eq.~11!. To deter-
mine a1 , a2 , anda3 , we must invoke the boundary cond
tions.

For the particular problem of this paper, the tractions
the surfacex350 are given by Eq.~3!. Taking the 2D Fou-
rier transform, we obtain

ŝ315 ik1fĈ, ŝ325 ik2fĈ, ŝ3350. ~17!

To keep the problem general for the time being, lets31, s32,
ands33 be the arbitrary tractions on the surface. The bou
ary conditions atx350 are given by
8-3
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W. LU AND Z. SUO PHYSICAL REVIEW B 65 205418
s315c44~u3,11u1,3!,

s325c44~u3,21u2,3!, ~18!

s335c11u3,31c12~u1,11u2,2!.

Taking the 2D Fourier transform on the both sides of E
~18!, we obtain

FIG. 2. An evolution sequence on a Cu substrate. The ave
concentration is 0.5.
20541
.

ŝ315c44~ ik1û31û18!,

ŝ325c44~ ik2û31û28!, ~19!

ŝ335c11û381c12~ ik1û11 ik2û2!.

Substituting Eq.~16! into Eq. ~19!, we obtain

ge FIG. 3. An evolution sequence on a Cu substrate. The ave
concentration is 0.4.
F c44~l1n1
~1!1 in1n3

~1!! c44~l2n1
~2!1 in1n3

~2!! c44~l3n1
~3!1 in1n3

~3!!

c44~l1n2
~1!1 in2n3

~1!! c44~l2n2
~2!1 in2n3

~2!! c44~l3n2
~3!1 in2n3

~3!!

c12~ in1n1
~1!1 in2n2

~1!!1c11l1n3
~1! c12~ in1n1

~2!1 in2n2
~2!!1c11l2n3

~2! c12~ in1n1
~3!1 in2n2

~3!!1c11l3n3
~3!
G F a1

a2

a3

G
5F ŝ31

ŝ32

ŝ33

G . ~20!
nu-
of
use
n of
and
e
ta-
Oncea1 , a2 , anda3 are solved from Eq.~20!, the displace-
ments are given by Eq.~16!. The strain field in the surface
«̂aa is given by

«̂aa5 ikaûa . ~21!

This expression then allows us to calculates, which in turn
enters the evolution equation~8!.
As mentioned before, the discrete FFT is used in the
merical simulation. The eigenvalue problem and the value
s at each grid point only need to be computed once, beca
they only depend on the elastic constants and the positio
the grid points in the reciprocal space. Once computed
stored, the values ofs at grid points are used in evolving th
concentration field at all time. Consequently, the compu
8-4
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tional effort to evolve the concentration field on an anis
tropic substrate is nearly the same as that on an isotr
substrate.

IV. NUMERICAL SIMULATIONS AND DISCUSSIONS

In all the simulations reported below, the calculation c
size is 256b3256b, V52.2, andQ51. Two crystalline sub-
strates Cu and Mo are used, whose elastic constants
found in standard textbooks. Figure 2 shows a simula
evolution sequence on a Cu~001! surface. The concentratio
has an average 0.5. The initial concentration fluctuates
domly within 0.001 from the average. It is found that strip
form and line up along the two directions~1,0! and~0,1!. The
directional preference of the patterns becomes observab
a very early stage, say att51. Figure 3 shows another se
quence with the average concentration 0.4.

Figure 4 shows an evolution sequence on a Mo substr
The average concentration is 0.5. The stripes line up al
the two directions~1,1! and ~21,1!. Figure 5 shows a se
quence with average concentration 0.4. In contrast to C
square lattice of dots is obtained for Mo.

The numerical simulations have shown several pattern
above. Consider the stripes at average concentration
Why do they have different orientations on the substrate
Cu and Mo? How do the orientations relate to the ela
properties of the substrate?

It is well known that the anisotropy of a cubic crystal c
be characterized by a single dimensionless parameter

FIG. 4. An evolution sequence on a Mo substrate. The aver
concentration is 0.5.
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c1212c44

c11
21. ~22!

When the crystal is isotropic,z50. When it is anisotropic,
the crystal falls into one of two classes,z,0 or z.0. Note
that z50.62 for Cu, andz520.14 for Mo. The physical
significance of this classification is as follows.

The coordinates (x1 ,x2 ,x3) coincide with the three edge
of the cubic crystalline cell, as shown in Fig. 1~a!. The co-
ordinates (x18 ,x28 ,x38) relate to (x1 ,x2 ,x3) by a rotationa
about thex3 axis. We cut a cylinder from the substrate alo
the x18 direction, as shown in Fig. 1~b!. We constrain the
cylinder to deform only in thex18 direction. We denote the
stress and strain along this direction bys and«, respectively.
The stress-strain relation along thex18 direction is

s5c~a!«, ~23!

where

c~a!

c11
511

1

2
z sin2 2a. ~24!

Equation~24! shows that for an anisotropic elastic body, t
stiffness measured in a uniaxial strain experiment depend
the orientation.

For the special case of elastic isotropy,z50, and Eq.~24!
gives c(a)5c11, independent of the orientation. Figure
shows the stiffness versus orientation curve for Cu in
polar coordinate. The distance from a point on the curve

e FIG. 5. An evolution sequence on a Mo substrate. The aver
concentration is 0.4.
8-5
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W. LU AND Z. SUO PHYSICAL REVIEW B 65 205418
the origin represents the magnitude of stiffness in the dir
tion. A Cu substrate has two compliant directions~1,0! and
~0,1! along which the stiffness minimizes. Figure 7 sho
the curve for Mo. The two compliant directions are~1,1! and
~1,1!. It is evident from Eq.~24! that whenz.0, the com-
pliant directions are~1,0! and~0,1! and whenz,0, the com-
pliant directions are~1,1! and ~21,1!.

Our simulations show that the stripes tend to orient alo
the compliant directions. This trend can be understood qu
tatively. For a fixed stress, the elastic energy density is p
portional to the elastic compliance. When the stripes ori
along the compliant directions, the system can relax m
elastic energy.

Next let us look into the problem in more detail. Th
question is, assuming that an arbitrary concentration strip
formed on the substrate, what will the orientationa of the
stripe that minimizes the free energy be? The energy per
area of the systemgave is expressed by7

gave5
1

A E
A
S g~C!1h0C,aC,a2

1

2
s3auaDdA, ~25!

whereA is the area of the surface andua the displacement in
the epilayer. In this paper we have assumed that the first
terms in the bracket are isotropic. A calculation shows t
for any concentration modulation in thex18 direction, the free
energy takes the form

gave5g01Rg1 , ~26!

whereg0 andg1 (g1.0) are independent of the orientatio
a, andR depends ona in a special way. Similar toc(a) in
Eq. ~24!, R is an analytical function ofj, wherej5sin2 2a.
The preferred orientation is obtained by minimizinggave, or
R. Note that

dR

da
52

dR

dj
sin 4a. ~27!

We find R reaches extrema ata50, 45°, 90°, and 135°. Ou
numerical simulation~including those not reported here! can

FIG. 6. The stiffness versus orientation curve for Cu in a po
coordinate.z50.62.
20541
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be distinguished into the following cases.
~i! Whenz50, the substrate is isotropic. All orientations a
energy equivalent, as expected.
~ii ! Whenz.0, R minimizes ata50 anda590°. Two en-
ergy equivalent variants exist.
~iii ! Whenz,0, R minimizes ata545° anda5135°. Two
energy equivalent variants exist.

We observe the coexistence of two variants in the num
cal simulations shown in Figs. 2 and 4. The two varia
form small tweedlike units. The numerical simulation sho
that such a configuration is very stable. Although the twe
like stripes increase the phase boundary energy comp
with a set of parallel stripes, it seems that such a configu
tion reduces more elastic energy. This possibility is be
investigated.15

At average concentration 0.4, when the substrate is iso
pic (z50), our previous simulation shows that the phas
form a lattice of triangular lattice of dots.9 For Cu (z
50.62), the phases form a tweedlike structure~Fig. 3!, prob-
ably because the anisotropy is strong. For Mo (z520.14),
the phases form a square lattice of dots~Fig. 5!; the anisot-
ropy apparently is weak enough to allow the dots to fo
instead of the tweeds, but strong enough to form a squ
lattice rather than a triangular lattice. Furthermore, on
isotropic substrate, the symmetry makes the triangular lat
in any orientation energy equivalent, leading to a polyd
main structure.9 By contrast, on a cubic substrate, the brok
symmetry results in dots in the~1,1! orientation ~Fig. 5!.
However, the cubic crystal only breaks the orientational sy
metry, but not the transnational symmetry: dislocations a
other imperfections are evident in Fig. 5.

V. CONCLUDING REMARKS

The formation of stable concentration pattern in an e
taxial monolayer requires three ingredients: phase separa
phase coarsening, and phase refining. These ingredient
sult in a nonlinear diffusion equation, with which we sim
lated the entire process of pattern evolution. This paper
cuses on the effect of substrate elasticity anisotropy on

r FIG. 7. The stiffness versus orientation curve for Mo in a po
coordinate.z520.14.
8-6
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pattern formation process. The simulation reveals that
anisotropy of substrate elasticity breaks the symmetry of
system, and tweedlike stripes form along the compliant
rection. A square lattice of dots may also be obtained. C
talline anisotropy only partially breaks the orientational sy
metry. Orientational variants~e.g., the tweeds! are still
permitted. The square lattice of dots, when formed, are pr
to transnational imperfections such as dislocations. To fo
more ordered structure over a large area, further symm
breaking operations are necessary, such as using the lit
raphy to define a coarsen patterns on the surface to guid
self-assembly.10,16 The method developed in this paper c
be readily extended to treat substrates with other symmet
such as the~011! surface of a cubic crystal. For most expe
mental systems, substrate elasticity, surface stress, and p
G

k

po
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boundary can all be anisotropic. One can imagine dive
patterns generated by the interplay of broken symmetrie
different kinds. At this point, it begins to be possible to so
out possible patterns within our model. However, the exp
mental information available to us is so incomplete for a
given system that a meaningful comparison with the mode
impossible. It is hoped that systematic experiments will so
succeed in bringing out phenomena specific to monola
mixtures on solid surfaces.
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