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a b s t r a c t

During fretting, the removal of material by wear leads to an increase of contact stress in the stick zone. If

elastic behavior is assumed, the boundary between stick and slip zones does not move, wear eventually

ceases, and a mode-I singularity of contact pressure is predicted after infinitely many cycles.

For real materials, the development of singular stresses must be limited by plastic deformation. Here

we investigate the effect of plasticity on fretting wear, using a finite-element model. We find that the

principal effect of plasticity is to allow the wear scar to extend continuously into the contact region.

Thus, wear continues indefinitely, and extensive damage or catastrophic failure is to be anticipated, given

a sufficient number of fretting cycles.

In the elastic régime, the results can be cast in dimensionless terms, permitting application to any ma-

terial or loading condition. Plasticity introduces an additional dimensionless parameter into the analysis,

but results of considerable generality can still be obtained. In particular, the contact pressure distribution

exhibits a stable maximum related to the yield strength of the material, and the maximum accumulated

plastic strain increases approximately linearly with the number of loading cycles and occurs close to the

instantaneous slip-stick boundary.

© 2016 Elsevier Ltd. All rights reserved.
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. Introduction

Partial slip or ‘microslip’, a common phenomenon in many

ngineering applications (Ciavarella, 1998a; 1998b; Fouvry et al.,

002; Vingsbo and Söderberg, 1988), occurs when the shear load

s insufficient to cause slip throughout a contact interface be-

ween deformable bodies. In ‘incomplete’ or non-conforming con-

act problems, such as indentation of a plane surface by a cylin-

er or a punch with rounded edges, the normal tractions decrease

moothly to zero at the contact edge (Ciavarella et al., 1998). How-

ver, when the contact is subjected to a cyclic shear load, regions

f reversed microslip are developed at the edges of the contact

rea and the resulting wear leads to a redistribution of stress (Ding

t al., 2004; Goryacheva et al., 2001; Johansson, 1994; Kasarekar

t al., 2007).

(Hills and Fellows, 1999) showed that the boundary between

tick and slip regions does not change during this wear process.

his result can be proved rigorously for any problem to which
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he Ciavarella–Jäger theorem (Ciavarella, 1998a; Jäger, 1998) ap-

lies and is also observed in numerical solutions (Ding et al., 2004;

ohansson, 1994; Madge et al., 2007). Under these conditions, wear

ill eventually progress to the state where the contact pressures

re negligible in the slip region. Wear will then cease and the sys-

em becomes elastically similar to a crack, with consequent square-

oot singularities in the normal and shear tractions in the stick re-

ion, as shown in Fig. 1.

In most practical cases, this process will be limited by plastic

eformation near the incipient crack tip, and this in turn may af-

ect the wear process and the evolution of contact pressure. This

s the effect to be explored in the present paper. It has poten-

ially important consequences for the prediction of the initiation

nd propagation of fretting fatigue cracks (Araújo et al., 2006; Fou-

ry et al., 2002; Giannakopoulos et al., 2000; Kuno et al., 1989;

um et al., 2005; Vingsbo and Söderberg, 1988).

In many contact systems, the intention is to provide sufficient

ormal force to approximate a completely stuck situation, so that

he resulting cyclic slip zones are small. In particular, if these zones

re sufficiently small compared with the other linear dimensions

f the problem, the local stress fields can be completely charac-

erized in terms of appropriate generalized stress-intensity factors

http://dx.doi.org/10.1016/j.ijsolstr.2015.12.031
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Fig. 1. The initial contact pressure decreases to zero smoothly. However, after a

large number n of loading cycles, the material in the slip zone is worn away and

the contact pressure near the stick slip boundary becomes elastically singular.

Fig. 2. A contact pair with a smooth contact edge. The indenter is subjected to a

normal force P and oscillating force Q, The coordinate x is measured from the edge

of the contact.
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(Dini and Hills, 2004). This procedure is similar in concept to the

‘small-scale yielding’ criterion in linear elastic fracture mechanics

(LEFM) (Rice, 1974) and has been shown to be very successful in

correlating fretting fatigue life (Hills et al., 2012).

In the present paper, we shall use this characterization in the

context of a finite-element model to make fairly general predic-

tions about the effect of plastic deformation on the evolution of

wear and contact tractions, and on the accumulation of plastic

strain during fretting.

2. Methodology

Fig. 2 shows the edge of the contact between two smooth bod-

ies subjected to a constant normal force P and a tangential force

that oscillates between ± Q, where Q < μP and μ is the coef-

ficient of friction, which is assumed to be the same under static

and dynamic conditions. We assume that the line of action of the

tangential force lies at the contact interface, so that no moment

is induced. We also assume that the materials of the two bod-

ies are similar, so that the second Dundurs’ constant, β , is zero

(Dundurs, 1969), and hence the slip displacements have no effect

on the distribution of contact pressure. This also implies that the

critical coefficient of friction defined by Klarbring’s ‘P-matrix’ con-

dition is infinite (Klarbring, 1999), and hence that the incremental

frictional problem is well-posed for all values of μ.

2.1. Asymptotic elastic fields

Following Dini and Hills (2004), we characterize the normal

tractions local to the contact edge in the absence of wear by the

expression

p(x) = C
√

x , (1)
here C is a constant that depends on the external loads and the

acroscopic geometry. If the length d of the slip zone is suffi-

iently small compared with the macroscopic length dimensions,

he local tangential tractions can then be written as

(x) = ±μC(
√

x −
√

x − d) (2)

Dini and Hills, 2004), where the sign depends on the direction

f slip and the square roots are interpreted as zero in any region

here their arguments are negative.

We assume that the slip zone length d is sufficiently small

hat there exists a range in which x � d, but x � D, where D

s a characteristic dimension of the macroscopic contact problem.

or practical geometries, this requires that the oscillatory term in

he tangential force be much less than the value required for full

lip — i.e. Q � μP. However, in the numerical study described in

ection 4.1 below, we found that the asymptotic characterization

ave predictions within ± 3% for values up to Q = 0.25 μP. The slip

one has little effect on the shear tractions in x � d, so these can

e characterized by a mode-II stress-intensity factor KII (Ciavarella

t al., 1998; Ciavarella and Macina, 2003; Dini and Hills, 2004; Gi-

nnakopoulos et al., 2000), where

(x) = μdC

2
√

x
= KII√

x
. (3)

otice that this definition differs by a numerical factor of
√

2π
rom that conventionally used in fracture mechanics.

The parameters C and KII are determined only by the macro-

copic geometry and the external loading, and hence could be de-

ermined from a numerical model of the system under ‘full stick’

onditions. Eq. (3) then provides a condition

= 2KII

μC
(4)

or the length of the slip zone, and hence for the local shear trac-

ion distribution, through Eq. (2). Notice that this implies the ex-

stence of an edge slip zone for all finite values of the coefficient

f friction μ, in contrast to ‘complete’ contact problems, which al-

ays stick in the corner if μ is sufficiently high (Churchman and

ills, 2006). Eq. (4) can be used to define a dimensionless coordi-

ate ξ = x/d and a corresponding normalization for tractions can

e defined as p̃ = p/σ0, q̃ = q/σ0, where the stress measure

0 =
√

2KIIC

μ
. (5)

ith this normalization, all elastic problems are condensed into a

ingle problem, subject only to the ‘small slip zone’ approximation.

.2. Effect of wear

Ciavarella (1998a) and Jäger (1998) have shown that when an

lastic contact is loaded first by a normal load P and then by a

angential load Q, the stick region Astick is coextensive with the

ontact region A∗ for a fictitious normal load P∗ given by

∗ = P − Q

μ
. (6)

his result also applies at the extreme points where the tangential

oad is ± Q, during completely reversed periodic loading.

It follows that Astick depends only on the profile of the contact-

ng bodies inside Astick, and this cannot be affected by wear, since

ear occurs only where there is slip. Thus, the extent of the stick

egion remains unchanged throughout the process (Goryacheva

t al., 2001; Hills and Fellows, 1999). By contrast, material is worn

way in the slip region and eventually, if the process is not limited

y yielding, the entire load P will be carried by the stick region.

he pressure distribution in this limiting state will comprise the
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Fig. 3. Overlapping material (shaded) that must be removed in the limiting state.
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uperposition of (i) p∗(x) due to the fictitious load P∗ and (ii) a

flat punch’ distribution due to the additional load (P − P∗) = Q/μ
ransferred to Astick from the worn region. This latter contribution

ill lead to a singular traction at the edge of the stick zone, whose

agnitude can be characterized by a mode-I stress-intensity factor

I. Furthermore, since the Green’s functions for normal and tan-

ential loading of the half plane are identical in form, Eq. (6) im-

lies that

I = KII

μ
. (7)

.3. The limiting wear profile

In order to reach this limiting state, material must have been

orn from the slip region, corresponding to the overlap that would

e implied by the limiting solution if there had been no wear and

nterpenetration of the bodies had been permitted.

This situation is illustrated in Fig. 3, where the origin of coor-

inate s is now taken at the edge of the stick region, so s = x − d.

or s > 0, the asymptotic form of the contact pressure is

p(s) = KI√
s

+ C
√

s . (8)

ear s = 0 this expression is consistent with the elastic field

round a crack tip with a compressive stress-intensity factor given

y Eq. (7), whilst further from s = 0 the contact pressure ap-

roaches the asymptotic form (1). Note that the parameter C defin-

ng the strength of the bounded term is not significantly changed

etween loads P and P∗ as long as the slip zone is sufficiently

mall.

Application of Williams’ asymptotic technique to these fields,

hows that the necessary wear w∞(s) in s < 0 to avoid interpene-

ration is

∞(s) = 4KI(−s)1/2

E∗ − 4C(−s)3/2

3E∗ = 4KII(−s)1/2

μE∗ − 4C(−s)3/2

3E∗ ,

(9)

here E∗ is the composite modulus (Johnson, 1985), which for

imilar materials is

∗ = E

2(1 − ν2)
, (10)

here E and ν are respectively Young’s modulus and Poisson’s ra-

io.

Eq. (9) shows that w(s) is positive in a region of length

1 = 3KII

μC
, (11)

nd this is exactly 50% larger than the original slip length d from

q. (4). In other words, as wear occurs, the bodies move closer to-

ether, so that the contact region grows. The limiting wear profile

9) can be written in terms of the coordinate x = s + d of Fig. 3

s

˜∞ ≡ E∗w∞
σ d

= 2(1 − ξ )
1/2 − 4

3
(1 − ξ )

3/2 ; −1

2
< ξ < 1 , (12)
0

here σ 0 is defined in (5) and we recall that ξ = x/d. No wear

ccurs outside this range.

.4. Wear model

We assume that wear is governed by the Archard wear law

Archard, 1953) in the form that wear is proportional to the work

one against friction. Since the contact pressure is independent of

lip displacements, it is approximately constant throughout a sin-

le loading cycle, so the wear depth accumulated during the ith

oading cycle can be written

i(x) = 2μαpi(x)�(x) (13)

here α is the wear coefficient and �(x) is the local slip displace-

ent during tangential loading from −Q to Q. We can also write

his equation in the dimensionless form

ĩ(ξ ) = E∗wi

σ0d
= 2α̃ p̃i(ξ )�̃(ξ ) , (14)

here

˜ = μ2σ0α ; p̃i = pi

σ0

; �̃ = E∗�
μσ0d

. (15)

ith this formulation, wear rates of the order α̃ ≈ 1 would cause

he steady state w̃∞(ξ ) to be closely approached in a few cy-

les. Realistic dimensionless wear rates are significantly lower than

nity, and indeed must be of order α̃ ≈ 10−2 or below for the as-

umption of constant pressure during each separate cycle to be

easonable.

. Finite element simulation

In order to determine the effect of wear on the contact stresses,

articularly in the presence of yielding, we created a plane-strain,

nite-element model in ABAQUS, of the form shown in Fig. 4.

In the system illustrated, microslip and wear will occur at both

he left and right edges of the contact area. However, if the mi-

roslip regions are sufficiently small compared with the total con-

act area, they will not interact and it is sufficient to focus atten-

ion on the left edge, since with completely reversed loading ± Q,

he evolution of wear at the two edges is similar. Very consider-

ble mesh refinement was used in this region, as shown in the two

uccessive insets. The two bodies were modeled by semicircles in

rder to facilitate appropriate mesh gradation away from the con-

act region. The contact surfaces were chosen to be circular of large

adius, in order that the model could be validated using theoretical

esults. However, we emphasize that although the model approxi-

ates Hertzian contact, the normalization introduced in Section 2

mplies that the conclusions are applicable to any problem having

smooth transition from contact to separation.

Sinusoidal tractions pb(θ , τ ) were applied at the semicircular

oundaries r = b in order to ensure the transmission of the desired

orces P, Q(τ ) across the interface. Here, τ is a time-like parame-

er which is introduced solely in order to define the sequence of

oading, since this is periodic and hence non-monotonic. All the re-

ults were obtained under quasi-static assumptions and, hence, are

ndependent of loading rate. The model was constrained against

igid body motion by fixing both degrees-of-freedom at one inte-

ior node and one degree-of-freedom at another node. It was ver-

fied that no unwanted nodal forces were generated at these con-

trained nodes.

The model was validated by comparing the normal tractions

ith the classical Hertzian solution, and the shear tractions with

he Cattaneo–Mindlin solution (Johnson, 1985). Also, slip displace-

ents, �(x), during the first cycle were compared with theoretical

alculations from Goryacheva et al. (2001). In all cases, excellent

greement was obtained.
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Fig. 4. Finite-element model.

Fig. 5. Evolution of the wear profile with the normalized number of loading cycles

α̃N, from elastic analysis. The dotted curve represents the maximum wear profile in

the elastic case, illustrated by the shaded region in Fig. 3 and defined by Eq. (12).
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Wear at the slip nodes was calculated using Eq. (14) and the

corresponding mesh adjustment was made using the method of

fictitious eigenstrains (Hu et al., 2015a). We assume that the worn

material is completely removed from the slip zone. In practical sit-

uations, the wear process is generally very slow, so that there is

very little change in the contact pressure distribution even after

hundreds of cycles. For computational efficiency, it is then reason-

able to use an enhanced value of α̃ which is equivalent to con-

sidering an appropriate number of successive cycles as having the

same pressure distribution.

Various strategies might be used to implement this approxima-

tion. Here, we used a linear extrapolation method in which two

successive cycles were simulated, including the very small change

in the second cycle due to wear, giving values for w̃i(ξ ), w̃i+1(ξ ).

The change in wear during each of the next n cycles is then as-

sumed to be [w̃i+1(ξ ) − w̃i(ξ )], so that the total accumulated wear

during n cycles is

i+n∑
j=i

w̃ j(ξ ) = nw̃i(ξ ) + n(n − 1)

2
[w̃i+1(ξ ) − w̃i(ξ )] . (16)

4. Results

In this section, we first investigate the evolution of the stress

field due to wear under elastic conditions, from which we can de-

termine when yielding is triggered for a given dimensionless yield

strength σ Y/σ 0. We then investigate the subsequent plastic defor-

mation, including its effects on the evolution of the wear profile

and the accumulated plastic strain.

4.1. Elastic behavior

As long as the system remains elastic and the slip zone is small

compared with the other linear dimensions in the problem, the

dimensionless solution is independent of all material and loading

parameters, including the coefficient of friction, and a completely

general numerical solution can be presented. The evolutionary
rocess is then characterized by the product α̃N, where N is the

umber of tangential loading cycles. We shall refer to this product

s the normalized number of loading cycles.

.1.1. Wear profile

Fig. 5 shows the dimensionless wear profile w̃(ξ ) at several

alues of α̃N. These results were obtained using a value of n in

q. (16) corresponding to α̃n ≈ 0.16 × 10−3. This involved around

500 applications of the extrapolation strategy of Eq. (16) in the

ange 0 < α̃N < 0.25, which we found to be more than adequate

o achieve numerical convergence. Also, the high degree of mesh

efinement ensured extremely smooth results, which are therefore
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Fig. 6. (a) Evolution of the dimensionless contact pressure p̃(ξ ) with the normal-

ized number of loading cycles α̃N, from elastic analysis. (b) Plots showing how the

stress field near the stick-slip boundary evolves to a crack-like inverse-root singu-

larity as wear progresses. ξ − 1 represents the normalized distance from the edge

of the wear scar.
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Fig. 7. The maximum von Mises stress associated with the developing contact pres-

sure singularity, from elastic analysis. Notice that early in the wear process, the

maximum occurs far from the slip region and is not related to the wear process.
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resented as lines rather than points in this and subsequent fig-

res.

Notice that the wear profile has reached approximately 95% of

ts steady-state value at α̃N = 0.25. We also note that the left ex-

ent of the slip zone moves steadily towards the limiting value ξ =
1/2 as wear progresses, but the stick-slip boundary remains un-

hanged, as predicted by theoretical arguments (Goryacheva et al.,

001; Hills and Fellows, 1999).

.1.2. Contact pressure

Fig. 6 shows the corresponding evolution of the dimension-

ess contact pressure distribution p̃(ξ ). A singular field is devel-

ped well away from the boundary of the stick zone for α̃N > 0.1.

or small amounts of wear, while there is still significant contact

cross the wear scar, this singular field is not very strong. How-

ver, it tends to the expected inverse-square root value when the

ear scar has developed to such an extent that it approximates an

nbridged crack. In many ways, this is a direct analogue (in com-

ression) of what is seen in tension for lightly and heavily bridged
racks (Sills and Thouless, 2015). Furthermore the peak pressure

ear the stick-slip boundary ξ = 1 continues to grow (without

imit) as the wear profile approaches its long-time limit.

.1.3. Maximum von Mises stress

In real materials, the development of the mode-I singularity at

he stick-slip boundary is limited by plastic deformation, which we

ssume occurs at a critical value, σ Y, of the von Mises equivalent

ensile stress

e =
√

3σi jσi j − σiiσ j j

2
. (17)

ig. 7 shows the magnitude of the maximum von Mises stress,
max
e , as a function of α̃N. At the beginning of the process, the

aximum occurs far from the slip region, but we obtain an almost

inear increase in σ max
e with α̃N as the peak in contact pressure

tarts to develop at around α̃N ≈ 0.1. The instant at which plas-

ic deformation starts depends, of course, on the ratio σ Y/σ 0. In

ll cases, the maximum von Mises stress occurs at the stick-slip

oundary on the contact interface.

.2. Plastic deformation

We next consider the effect of plastic deformation on the evo-

ution of the wear process. We assume that the material is elastic-

erfectly plastic, so that yielding occurs at a constant von Mises

tress σ Y. This introduces a new dimensionless parameter σ Y/σ 0

nto the calculation, so we are only able to present particular cases.

n order to explore the influence of plastic deformation, we chose

he values σY /σ0 = 1 and 1.5, which we note from Fig. 7 ensure

hat the contact starts in the elastic régime, but that plastic defor-

ation starts relatively early in the wear process (at α̃N = 0.07 for

Y /σ0 = 1).

.2.1. Wear profile

Fig. 8 (a,b) shows the development of the wear profile for

Y /σ0 = 1 and 1.5 respectively. The limiting value of wear in the

lastic case is shown dotted for comparison. It is clear that plastic

eformation allows wear to continue indefinitely both in depth and

xtent. In particular, the slip-stick boundary extends into the origi-

al stick zone and the wear scar also extends further into the orig-

nal separation zone. This is in sharp contrast to the elastic case,
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Fig. 8. Development of the dimensionless wear profile w̃(ξ ) with the normalized

number of loading cycles α̃N for the elastic-plastic case: (a) σY /σ0 = 1.5 and (b)

σY /σ0 = 1. The limiting wear in the elastic solution is shown dotted.

Fig. 9. Evolution of the contact pressure distribution p̃(ξ ) with the normalized

number of loading cycles α̃N for the elastic-plastic case: (a) σY /σ0 = 1.5, (b)

σY /σ0 = 1. The dotted curve shows the elastic pressure distribution for α̃N = 0.2.
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where wear is restricted to the original slip zone and is eventu-

ally predicted to terminate. The observation that plasticity allows

a wear scar to propagate beyond the original stick-slip boundary

also applies to situations where the shear stress is limited by the

strength of the interface, rather than by plastic deformation in the

contacting materials (Hu et al., 2015b). A comparison of Fig. 8(a

and b) shows that wear progresses more rapidly when the yield

stress is lower.

4.2.2. Contact pressure

The corresponding contact pressure distributions are shown

in Fig. 9 (a and b). The most striking feature of these results

is that the maximum contact pressure now levels out at about

pmax ≈ 2.5σ Y. This ratio is consistent with values for the maxi-

mum normal stress that arise in elastic-plastic crack problems (e.g.,

Hutchinson, 1968; Tvergaard and Hutchinson, 1992), being slightly

less than the limiting value of 2.97 expected from the Prandtl so-

lution for a crack in a rigid-plastic material. The location of this

maximum moves to the right as wear progresses, and is always

very close to the instantaneous slip-stick boundary.
.2.3. Accumulated plastic strain

As the wear evolves, a plastic zone forms starting from the con-

act interface and its size grows. The magnitude of the accumu-

ated plastic strain is defined as

p
e =

∫ τ

0

√
2

3

∂εp
i j

∂τ

∂εp
i j

∂τ
dτ : (18)

here we recall that τ is a time-like parameter characterizing

he sequence of loading. The maximum accumulated plastic strain,
p,max

e , is considered to be an important indicator of fatigue crack

nitiation (Abuzaid et al., 2013; Manonukul and Dunne, 2004; Mc-

owell, 2007; McDowell and Dunne, 2010).

Notice that with the definition (18), the plastic strain increases

onotonically during cyclic-loading, even if the individual strain

omponents oscillate. Two extreme cases would be (i) if the

lastic-strain components reverse completely during each cycle,

s in a beam subjected to completely-reversed bending moments,

r (ii) if the plastic-strain components accumulate monotonically.

ase (i) raises difficulties for the present computational scheme,
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Fig. 10. Contour plot of accumulated plastic strain at three values of α̃N (σY /σ0 = 1).
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Fig. 11. Maximum accumulated plastic strain ε̃ p,max
e as a function of α̃N for σY /σ0 =

1 and 1.5.
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ince it is not practical to simulate every cycle of loading through-

ut a realistic wear process. We therefore performed a prelimi-

ary study in which we simulated n = 50 consecutive cycles in

he plastic régime, and compared the resulting accumulated plas-

ic strain with that accumulated during a single cycle with an en-

anced wear rate of α̃n. The results differed by less than 3% and,

n fact, the single-cycle strain was the largest. We therefore con-

lude that the evolving plastic strain is a result of monotonic ac-

ommodation to the change of profile associated with wear, rather

han a result of cyclic plasticity. This also implies that estimates

ased on a reduced number of cycles with an enhanced wear rate

re likely to give good predictions for the accumulation of plastic

train.

Fig. 10 shows contour plots of εp
e at α̃N = 0.15, 0.2, and 0.25 for

Y /σ0 = 1. In the interests of generality, we present these results

n the combination

p
e ≡ E∗ εp

e

σ0

, (19)

ince the results then apply to all systems with the same ratio

Y/σ 0. The plastic zone first grows along the contact interface and

hen spreads in the perpendicular direction. However, the maxi-

um accumulated plastic strain is always located close to the con-

act interface, and it moves with the slip-stick boundary.

Fig. 11 shows ε̃ p,max
e as a function of α̃N for σY /σ0 = 1 and

.5. In each case, plastic deformation starts at the value of α̃N

etermined by the appropriate intercept in Fig. 7, and ε̃ p,max
e in-

reases approximately linearly thereafter. It is interesting to note

hat for higher yield stress, plasticity is delayed, but the plastic

train then accumulates more rapidly. Fig. 11 is terminated at α̃N =
.3 because, beyond that point, the plastic zone extends into a re-

ion of coarser mesh, implying less accuracy. However, the indica-

ions from these less precise calculations are that ε̃ p,max
e contin-

es to increase linearly indefinitely as the wear scar continues to

xtend.
. Conclusions

We have presented a finite element model of the evolution of

ocal stress fields due to fretting wear, in the case where the nor-

al contact force is constant and the slip zone is small compared

ith the other linear dimensions of the system. In this limit, the

lastic solution characterizes all possible problems of this class. As

ear progresses, the slip-stick boundary remains stationary, and

he contact pressure distribution develops a local maximum. Even-

ually, all wear ceases, and the local stress field is characterized by

stress-intensity factor K = K /μ, where K is the mode-II stress-
I II II
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intensity factor for the ‘full stick’ solution and μ is the coefficient

of friction.

By contrast, for elastic-plastic material behavior, the slip-stick

boundary moves steadily into the stick region once the yield stress

is locally exceeded, and wear continues indefinitely, leading even-

tually to extensive wear damage. The contact pressure distribu-

tion achieves a stable peak value which moves with the slip-

stick boundary. Plastic strain accumulates with a maximum at or

near this moving boundary, and the maximum accumulated plas-

tic strain increases approximately linearly with subsequent cycles.
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